Industry Review 2016-2017

2017 - the year of 17 successes
Many daily lives rely on chlor-alkali chemistry and products to keep them healthy but also to enable them to work safely and efficiently.

This year we highlight those jobs which rely on materials that would not exist without chlorine and caustic soda. Euro Chlor, the European chlor-alkali industry association will expand this list of jobs, focusing on the real-world benefits of chlor-alkali to the European workforce.
Table of contents

Foreword ... 4

Sustainability .. 6

- Introduction Dieter Schnepel ... 6
- Manufacturing Technology ... 7
- Economic Development ... 7
- Mercury Emissions .. 8
- Energy Consumption .. 8
- Hydrogen Use .. 9
- Occupational Safety ... 9
- Process Incidents .. 10
- Time dedicated to HSE training .. 10
- Environmental Accreditation .. 11
- Transportation ... 11
- VinylPlus .. 12
- Technology Conference 2017 .. 13
- Health Working Group .. 13

Regulation ... 14

- Emission Trading System reform post-2020 14
- Chlorate Emissions ... 14
- Clean energy for all Europeans .. 15
- Major milestone for biocides process 15
- Challenges facing chloro alkanes in Europe 16
- Safety Initiative: first promising results 16
- Goodbye to mercury technology .. 17
- New mercury regulation reinforces phase out 17
- Safe mercury phase out ... 18
- UNEP Stockholm Convention .. 18
- Minamata Convention on mercury ... 19
- Chlor-Alkali Partnership mercury reporting 19
- ECSA: REACH ... 20
- ECSA: Product Stewardship Activities 21

Competitiveness ... 22

- Chlorine Production 2016 ... 22
- Chlorine and caustic soda applications 2016 23
- Chlorine Production Plants January 2017 24

Communication ... 28

- The “17 Successes” Communication 28
- New science dossier .. 29
- Euro Chlor at SETAC .. 29
- Social media activities ... 30
- Euro Chlor’s YouTube Channel ... 30
- Corporate website ... 31

- The Euro Chlor Federation .. 31
- Management Committee .. 32
- Full Member Companies ... 32
- Associate Member Companies .. 33
- Euro Chlor Technical Correspondents 34
- Euro Chlor Secretariat Staff .. 35
2017, the chlorine year

2017 is remarkable for several reasons

First of all, it is our year, commemorating number 17 on the Periodic Table, as featured in our logo and benefits campaign on the many everyday essential ‘chlorine things’. 2017 is also the year in which our tenth Technology Conference took place, this time in May in Berlin. The attendance of over 360 people and 46 booths demonstrates the vitality of our industry and its attractiveness to its many and diverse stakeholders.

2017 also comes with challenges as it is the year in which, by 11th December, mercury cell technology to produce chlor-alkali will no longer be considered a ‘Best Available Technique under any circumstances’. With this deadline approaching we have seen good, recent progress, but challenges still remain. Conversion and decommissioning represent significant financial challenges, but they are also complex in terms of safety and reducing environmental and occupational exposure. Euro Chlor facilitates the sharing of accumulated experience amongst its members and will continue to support the safe, permanent disposal of excess mercury.

2017 also saw the launch of an important project within the ‘Safety Initiative’. Improving incident sharing continues to prove challenging, but everyone agrees work is vital here to make it a success.

“The regulatory and economic environment in Europe continues to challenge our global competitiveness.”
Meeting members with different responsibilities within the companies and openly discussing with them on removing hurdles to incident sharing has already yielded positive results. We also use these meetings to communicate on the various Euro Chlor activities and documents, as well as identifying future member needs. These open interactions are highly appreciated by all involved and have already led to new projects that have triggered company experts to join Euro Chlor task forces. We intend to continue this programme, aiming to re-establish positive interactions with all our members.

As an active contributor to global activities via the World Chlorine Council, we are sharing these learnings with our colleagues around the globe, in order to promote safety as the key element of our universal goal to ensure our license to operate.

Looking to the outside world, the regulatory and economic environment in Europe continues to challenge our global competitiveness. According to Cefic statistics, regulatory costs have doubled over the past decade with energy policies continuing to increase power prices due to rising taxes and levies, reducing our global competitiveness. Fortunately, despite these continuing political uncertainties, the economy is slowly picking up. Nevertheless, Europe urgently needs to improve its policy support for the manufacturing sector to foster innovation, provision of new jobs, generate growth and supply the needs of future generations.

At its June 2017 meeting, the Council called for a future industrial policy strategy, underlining the essential role of industry as a major driver for growth, employment and innovation in Europe. In line with its own earlier conclusions, it called for concrete action to ensure a strong and competitive industrial basis for the Single Market. It is vital that these policy intentions are realised so that both citizens and industry in Europe benefit. On a global, level playing field the European chlor-alkali industry will be successful. We stand ready to deliver the needs for the future, but let’s begin now in 2017!

Dolf van Wijk
Executive Director
To help all of Europe live and work safely and sustainably

Please allow me to start with a number. 7500. This is the number of workers who are employed in the European chlor-alkali Industry. From these chemical professionals comes nearly 9.7 million tonnes of chlorine every year, and their health and safety is of prime importance to Euro Chlor. From the guidance documents to this year’s successful and well attended Technology Conference and mercury workshop, we are always thinking of ways to further improve our industry’s safety. Nowhere is this more evident than in recent Euro Chlor outreach programmes to engage the membership and help them identify areas for further improvements in safety and sustainability.

Another core area for Euro Chlor is highlighting the socio-economic benefits of our industry. Here, the numbers speak for themselves. Over half of all chemicals produced in Europe rely on chlor-alkali products, with the vast majority of chlorine helping to form essential modern plastics (such as PVC). 85% of all medicines made in Europe are based on chlorine, over 90% of European drinking water is made safe for consumption using chlorine and 25% of medical devices involve chlorine chemistry in their production.

We must also not forget the number of jobs which are made safer and more efficient thanks to our products. 2.7 million European firefighters use chlorine-based protective equipment, 3.5 million nurses use PVC-based medical devices to treat our ill and 11 million European construction workers build safe and environmentally friendly structures using chlor-alkali based building materials. These and many more are reliant on the valuable chemicals our industry provides.

This 2017 review is dedicated to these people, highlighting that our modern lifestyles are thanks, in no small part, to chlor-alkali. This theme will return in a new Euro Chlor initiative

(‘17 successes’) which I hope you will join me in supporting. It is up to all of us to promote the virtues of our industry, working tirelessly to help all of Europe live and work safely and sustainably.

Dieter Schnepel
Chairman of the Management Committee
3.1% decrease in energy consumption
1.4% decrease in hydrogen utilisation

Manufacturing Technology

Two mercury based units were shut down and/or converted to membrane technology during 2016. As of the end of 2016, membrane technology represented about 66% of European chlorine production capacity. In contrast, the mercury process now accounts for approximately 17% of production capacity.

In 2017, conversions to the membrane process (or closures of the mercury plants) will further increase due to the implementation of the chlor-alkali BAT conclusions under the Industrial Emissions Directive. The Directive requires exclusion of mercury technology, with implementation of the chlor-alkali BAT by member states by the end of 2017.

Economic Development

Within the Sustainability Programme, Euro Chlor is publishing on a monthly, quarterly and annual basis, European production data for chlorine and caustic. This includes utilisation rates and caustic stocks.

In addition, every year, chlorine and caustic applications, plant capacities and employed production technologies are published in this annual review.

The aim of these efforts is to increase transparency on the activities of the European chlor-alkali sector.

“We must not forget the number of jobs which are made safer and more efficient thanks to our products.”
Mercury Emissions

The phase out of the mercury process for chlor-alkali production continued in 2016 as it must be finalised by the end of 2017. Despite this, Euro Chlor considers it to be vital to continue monitoring and reducing mercury emissions at those production sites which still employ mercury-based technology.

The absolute level of mercury emissions declined to around 1.4 tonnes in 2016, a reduction of approximately 0.3 tonnes/year compared to 2015. This is mainly due to the closure of several mercury installations in 2016.

Specific mercury emissions remained at 0.68 g Hg/tonne Cl₂ capacity in 2016.

Energy Consumption

Energy consumption in 2016 was at 93.2% compared to the 2011 reference level. Compared to 2015, there was a decrease of 3.1% (from 96.3% to 93.2%). This decrease is due to several factors: the conversion of mercury to membrane plants (or closure of the mercury plants), the lower number of companies participating in the Sustainability Programme this year, and the reduced production level in 2016 (when compared to 2015).

In 2016, 92% of Euro Chlor members from 50 sites were surveyed under the sustainability programme whilst in 2015 this was 97% at 54 sites.
Hydrogen Use

The use of hydrogen has slowly decreased since 2014. In 2016, the utilisation rate of hydrogen was 87.5%, a decline of 1.4% compared to 2015.

Hydrogen can be used for several applications such as a chemical reagent, as fuel for steam generation, generating electricity in fuel cells and as fuel for transport devices. Its production can also be avoided by the installation of depolarised cathodes. To further increase hydrogen use, different options are available. However, in practice this is often complicated due to economic constraints.

Utilisation rate of hydrogen
decreased by **1.4%**

Contractor incidents decreased to **1.8** per **1,000,000** working hours

Hydrogen used
(% of production)

Occupational safety
(number of LTI incidents per million working hours)

In 2016, Lost Time Injuries (LTIs) for member company personnel increased slightly (from 1.9 to 2.0) compared to 2015 whilst the LTI figure for contractor staff improved (from 2.1 to 1.8). This stagnating performance, in addition to the absolute value, is the reason for the Safety Initiative. Here, Euro Chlor and its members are looking into options to improve the culture of incident sharing and learning from each other to prevent and reduce the number of incidents in our industry branches.

It should be noted that, since 2011, this LTI rate per million working hours only includes incidents directly related to chlorine industry specific items.
Process Incidents

The process incidents and losses slightly declined compared to 2015, from 2.58 to 2.28 incidents per million tonnes of chlorine produced. This looks promising but we have to keep in mind that in 2016, fewer sites participated compared to 2015.

The Safety Initiative continues to work on improvement of incident sharing and sharing best practices to improve the safety performance of our industry sector.

Time dedicated to HSE training

This indicator, introduced during the second phase of the Sustainability Programme, monitors the proportion of working time spent on formal training of member company operators in the fields of health, safety and environmental protection (HSE).

Over the last few years, this figure was rather stable at 1.5%, but this year we have seen an increase to 1.7%.

“Safety Initiative continues work to improve sharing of best practices.”
Environmental Accreditation

Overall, the percentage of sites with ISO 14001 (environmental) accreditation increased compared with 2015, returning to the 2013 level. The percentage of sites also having the more demanding EMAS (Eco-Management & Audit Scheme) has slowly decreased in recent years.

93.8% of sites have achieved ISO 14001 accreditation
20.8% of sites have achieved EMAS accreditation

Transportation

The amount of chlorine that is transported from production sites decreased further in 2016. Only 3.6% of produced chlorine was transported, mainly by rail (81%).

It should be noted that this year’s review includes reports from fewer production sites as compared to last year.
VinylPlus continues its progress towards PVC sustainability

Since its June 2011 launch, VinylPlus continues to build on the accomplishments of its predecessor Vinyl 2010, to make PVC truly sustainable. Now that the half-way point of its 10-year journey has passed, progress is continuing on all five Sustainability Challenges, derived from The Natural Step System Conditions for a Sustainable Society.

VinylPlus brings a significant contribution to circular economy activities; a key objective of current EU policy. Circular economy is more than waste management though, it entails efforts to do more, with less!

In 2016, VinylPlus increased the volume of recycled PVC to 557,000 tonnes. This enables a saving of more than 1.1 million tonnes of CO₂. A cumulative total of over 3.5 million tonnes of PVC has been recycled since 2000, thanks to VinylPlus efforts. Legacy additives remain an open issue, having a negative impact on demand for recycled PVC. VinylPlus is confident though that the ever-increasing number of studies it undertakes in support of PVC recycling/ recycled product safety will lead to balanced solutions that combine maximum safety with increased recycling potential.

VinylPlus also confirmed the commitment taken to the sustainable use of additives, documenting the cessation of sales of lead stabilisers in the EU-28 and continuing to develop a science-based methodology (the Additives Sustainability Footprint, ASF), for assessing the sustainable use of PVC products additives. All of this has been carried out in constant dialogue with all stakeholders as demonstrated by the increasing credibility of the annual Vinyl Sustainability Forum.

The VinylPlus commitment is also recognised by external stakeholders at international levels. VinylPlus was “Highly Commended” by The Circulars 2017, a prestigious circular economy award programme run by the World Economic Forum and the Forum of Young Global Leaders. This programme offers recognition to those businesses, organisations and individuals who distinguish themselves by driving innovation and growth in the circular economy.

✉️ info@vinylplus.eu 🌐 www.vinylplus.eu 🐦 @VinylPlus_EU
Technology Conference 2017: sustainable chlorine production in the spotlight

The tenth Euro Chlor Technology Conference & Exhibition, held in Berlin from May 16 to May 18, again shared best practices and new technological developments in the areas of health, safety and environmental protection.

Chairman Dieter Schnepel welcomed 360 participants from 34 countries and highlighted that our industry will continue to develop in the years ahead of us. Our high energy demand means we need to find increasingly efficient ways of using energy. “This again is a driving force for even more environmental and economically effective measures to reduce our energy consumption”, Schnepel underlined.

46 Exhibitors presented their equipment and services. Representatives of member companies and other institutions also contributed with highly appreciated presentations. Apart from the mercury challenge, issues like the effects of the EMF Directive on our industry, the protection of our worker’s physical and mental health and the continuation of Euro Chlor’s sustainability programme were some of the many discussed subjects.

Thomas Bareiß, a member of the German Bundestag who specialises in energy matters, underlined the need for our industry to stay in Germany and Europe but recognised that this strongly depends on competitive energy availability.

Many challenges are achievable thanks to our collaborative approach, on which Euro Chlor Executive Director, Dolf van Wijk closed the conference, stating that “transparency and working together are key shared values for success”.

Health Working Group broadens its horizons beyond chemical hazards...

At the recent Technology Conference, it became clear that the Euro Chlor occupational physicians were ready to tackle three new interesting topics:

- **Electromagnetic fields:** Jean-Claude Besson presented the latest information to enable health professionals to reassure concerned workers. A training presentation will follow;
- **Shift work:** Marc Boeckx showed which working schedules presented the highest risks of accident and gave useful advice on how to keep workers alert and healthy;
- **Burn-out:** Aline Hugé covered this cross-industry emerging issue, providing practical advice on prevention, identification of early symptoms and the reintegration of people upon recovery.

Already working for years on health management issues related to mercury, chlorine and/or caustic soda, the group is prepared to take up new challenges!
Emission Trading System reform post-2020: the political debate continues

The European Commission, Parliament and Member States have yet to reach consensus on the revision of the EU Emissions Trading System (EU ETS) for the post-2020 period.

For Euro Chlor, it is crucial to ensure that indirect emitters producing up to the benchmark of energy efficiency do not face any carbon costs. Currently the Council proposal foresees (limited) compensation through State Aid, whereas the EU Parliament proposes a centralised system at Union level that can be supplemented by State Aid if needed.

Together with Cefic Public Affairs, Euro Chlor advocates for an effective compensation scheme that guarantees a level playing field across the EU. Subsequently, it will be crucial to follow up on the 2018 review of the State Aid rules, ensuring that our sector remains an indirect emitter eligible for State Aid.

Chlorate Emissions

The Euro Chlor Environmental Working Group (EWG) has completed a project to model chlorate emissions from chlor-alkali plants.

During the 2014 chlor-alkali BREF process, chlorate emissions to water were extensively discussed. However, due to a lack of suitable data, no sensible BAT-AEL could be set. Therefore, a monitoring requirement was added so that data could be obtained by producers, to eventually set such a limit.

Building on this obligation, and to prepare for future discussion on a sensible emission limit for chlorate, in consultation with ARCHE Environmental consultants, the EWG collected and analysed membrane plant chlorate emission data from Euro Chlor members. These data have underlined the need for members to continue with their environmental chlorate monitoring activities.
Clean energy for all Europeans

The November 2016 ‘Clean energy for all Europeans’ legislative proposals cover energy efficiency, renewable energy, the design of the electricity market, security of electricity supply and governance rules for the Energy Union. The Commission’s ambitious plan also includes actions to accelerate clean energy innovation and to renovate Europe’s buildings.

Expressed in numbers, the whole package targets a 40% greenhouse gas emission cut in 2030 compared to 1990, an increase in share of renewables in power generation of up to 27% and an EU-wide 30% improvement in energy efficiency. Starting with the topic of energy efficiency, the EU Parliament and Member States are now scrutinising all texts and proposing amendments.

For industry it will be challenging to safeguard global competitiveness in a renewable-friendly regulatory framework that risks rendering European energy supply less reliable and very expensive.

Major milestone for biocides process

After nearly a decade of effort by Euro Chlor members, on 14 December 2016, the European Chemicals Agency (ECHA) Biocidal Product Committee decided to approve the disinfectant uses of chlorine, calcium hypochlorite and sodium hypochlorite! This means that the product application phase can now begin for these active substances. Taking place over the next two years, the active approval and product application date is expected in January 2019.

However, Euro Chlor biocidal registration groups will still be involved with works on cooling waters and slimicide applications over the next 5 years for the hypochlorite active substances.

Work will also continue in the product arena; with cooperation between members to share the workload on product applications and disinfection by-product assessment.
Challenges facing chloro alkanes in Europe

In collaboration with the MCCP REACH consortium, the Chloro Alkane Sector Group held an international workshop in Brussels in January 2017.

After discussing the additional REACH CoRAP PBT testing requirements (due for completion by September 2018), the event covered the regulatory position of chloro alkanes in North America as well as their situation in the Water Framework and RoHS directives. There was also a keen drive to better understand downstream uses, leading to successful outreach programmes with lubricant, PVC and paint manufacturers.

From this workshop, a new presentation was released to help authorities to understand why SCCP (a phased-out substance) cannot be an impurity in MCCP. This video is available via the Euro Chlor website.

This workshop highlighted that whilst challenges remain, chloro alkanes are vital in modern society thanks to their versatile chemistry.

Safety Initiative: first promising results

In 2014, the Euro Chlor Safety Initiative was launched based on stagnating and declining safety performance indicators. This resulted in the introduction of a quarterly Safety Newsletter, discussion of incidents in all technical meetings and the introduction of key safety rules.

Also, at the end of 2016, visits to several member companies began to discuss enhancing incident sharing, exchanging safety learnings, fostering networking between members and obtaining a better understanding on what members expect from Euro Chlor. First results are promising; more incidents have been reported (as reflected in improved Euro Chlor guidelines) and participation in Euro Chlor working groups has increased. These successes will be further discussed at this year’s Annual General Assembly.
Goodbye to mercury technology at the end of 2017

The 2013 Best Available Technique conclusions under the Industrial Emissions Directive implied that mercury cell technology can no longer be used in chlor-alkali units after 11 December 2017. For several years, Euro Chlor has systematically reminded its members of this deadline and has shared announcements of conversions and closures via dedicated Euro Chlor web pages. In addition, the secretariat has been a source of information in relation to dismantling projects, conversion of mercury into mercury sulphide, storage of stabilised mercury, treatment of contaminated sites etc. It should be noted, however, that the mercury story will not end with the shut-down of the last mercury cell. Indeed, issues such as the demolition of buildings and the treatment and follow-up of contaminated sites will continue to keep the chlor-alkali industry busy for several more years.

New mercury regulation reinforces phase out

On 24 May 2017, the new EU regulation on mercury was published (EU 2017/852). The new regulation reinforces the phase out deadline of the end of 2017 and Euro Chlor will continue to support the membership in identifying conversion and storage options. This regulation allows the temporary storage of liquid mercury for a maximum of 5 years, with a possible maximum extension of 3 additional years. Meanwhile, the liquid mercury must be converted into mercury sulphide before being permanently disposed of. If the mercury from the cells is stored for more than one year, the storage requirements of the Landfill Directive (EU 1999/31) kick in.

“Another significant step taken in mercury phase out in 2017.”
Members meet to share experiences on safe mercury phase out

Building on a successful 2016 workshop, Euro Chlor held another session in February 2017 in Brussels to share practical experiences on minimising mercury exposure during the decommissioning process. Given the December 2017 mercury phase out date, decommissioning activities are presenting challenges in ensuring that the environment is protected, and workers remain healthy and safe during this critical work.

Member company representatives share mercury phase out experiences

In addition to a set of presentations on health, safety and technical aspects of the mercury phase out, members were given time to quiz industry experts. Questions clarified included the regulatory situation, mercury stabilisation, equipment disposal, site remediation and minimising exposure.

Euro Chlor is planning to capitalise on this meeting, developing guidance and preparing similar events to help meet future challenges.

UNEP Stockholm Convention lists SCCP but...

The 2017 Conference of the Parties meeting (COP8) of the Stockholm Convention was held jointly with the Basel and Rotterdam Conventions in Geneva. Despite objections from Parties such as China and India, short chain chlorinated paraffin (SCCP) was listed on Annex A (elimination) with a list of specific exemptions that covers nearly all current uses (e.g. rubber conveyor belts, waterproof/ fire retardant paints, secondary plasticisers). These exemptions will now be applied for by countries, prior to evaluation by a technical committee in 2020.

Questions were raised by several countries (including Russia) on whether SCCP even meets the Annex E (adverse effects through long range transport) criteria. A 1% limit was also placed in mixtures containing SCCPs, despite the fact that, when one considers the chemistry of these substances, SCCP cannot be present in medium or long chain chlorinated paraffins (M/L CCP).

For Europe, there are no direct consequences as the use of SCCP ended several years ago. However, the Chloro Alkanes Sector Group is concerned about possible unjustified spill-over effects to other chlorinated alkanes.

Additionally, HCBD was finally listed on Annex C (in addition to Annex A) of the convention (reduction of unintentional production).
Minamata Convention on mercury enters into force

With the adoption of the EU Mercury Regulation in May 2017, the EU simultaneously ratified the Minamata Convention. This ratification by the EU Commission prompted other Member States to act, bringing the number of ratifications up to the required 50 for the Convention to enter into force. The first Conference of the Parties (COP1) meeting was then scheduled for 24-29 September 2017 in Geneva. The World Chlorine Council (WCC) will attend to follow up on several open-ended issues including waste handling and storage, import and export of mercury, reporting obligations and finances.

The voluntary Mercury Chlor-Alkali Partnership programme, managed by the UNEP Secretariat jointly with the US EPA (Environmental Protection Agency), was initially set up to facilitate information sharing during Minamata Convention negotiations. With the entry into force of the Convention, the role of this Partnership is likely to be revisited.

From the beginning of the Partnership programme, WCC has been an active contributor to the Chlor-Alkali Partnership which provides a useful information exchange platform. WCC has shared essential information such as best practices and accumulated experience from its regions on mercury handling, storage and waste treatment, costs of conversion and other information. WCC also tracks and reports annually on the progress of mercury phase out, thus contributing to the transparency of the activities of our sector. WCC is committed to continuing these efforts in close cooperation with UNEP.

Chlor-Alkali Partnership mercury reporting

The World Chlorine Council continues to gather mercury emission data from its members and annually reports them to the UNEP Chlor-Alkali Partnership. The number of plants is decreasing as expected and will further reduce in the coming year due to mercury technology no longer being allowed in Europe as of the end of 2017. At this moment, worldwide there are still 34 mercury plants with a joint production capacity of 3 million tonnes of chlorine per year.

Due to the closure of four plants, the absolute mercury emission declined in 2016 from 5.6 tonnes to 4.4 tonnes. In 2016 the emission per tonne of chlorine capacity decreased to 1.44 g/tonne Cl2.

“Minamata Convention entered into force on 16 August 2017.”
For **methylene chloride**, several comprehensive REACH dossier updates were performed as part of a 2014 ECHA compliance check. Unfortunately, the substance has meanwhile been added to the CoRAP list for substance evaluation. At the end of April 2017, the Italian evaluating MSCA conveyed its decision to request further investigations into the alleged endocrine disrupting (ED) properties. Following discussions with the responsible MSCA toxicologist, a summary document was sent that presented the results from *in silico* testing, explaining that the substance has no ED properties and that further testing is redundant. A final decision is now expected within 12 months.

For **chloroform**, the consortium has decided to conduct a new survey of industrial users to improve the environmental exposure assessment. This will confirm that unavoidable discharges into sewage treatment plants do not pose a risk to the environment.

“**Scientific results counter claims of cancer formation at low exposure levels for methylene chloride.**”
ECSA
Product Stewardship Activities

Given ECSA’s interest in promoting Product Stewardship and providing comprehensive information for safe handling of chemicals, the association has updated existing information and provided additional information via its website www.chlorinated-solvents.eu.

These updates include…

…German guidelines on safe use of PER in dry-cleaning
ECSA has translated information on safe working conditions for using perchloroethylene (PER) in dry-cleaning in Germany. Originally written by the German Federal Office for Work Safety in cooperation with local authorities, these documents have been published based on recent exposure assessment studies in German dry-cleaning shops. They confirm that, under controlled conditions, exposure can be lower than 20ppm, the exposure limit published by the EU Commission (DIRECTIVE (EU) 2017/164, 31 January 2017).

…Revision of the ECSA Storage & Handling Guidance
ECSA Guidance on the safe use of chlorinated solvents was updated in late 2016 to provide current information on solvent maintenance, recycling and disposal of spent solvents. Recommendations for textile and metal cleaning machines are also included in the guideline to provide one single reference point. Translations into German, French, Italian, Spanish and Russian are being prepared and will be published on the ECSA website.

…Labels for Chlorinated Solvents
In order to provide ‘hands-on’ labelling information for users and distributors of chlorinated solvents (namely methylene chloride and perchloroethylene), generic labels have been published with current hazard classifications of the substances with hazard and precautionary phrases in all European languages. These labels can be downloaded from the ECSA publication webpage and tailored for the particular product with the required languages and product name. A proposal for a generic tank label is also available.

…Genotoxicity study commissioned on methylene chloride
Together with its US sister organisation (HSIA), ECSA funded a study to clarify the cancer formation mode of action from methylene chloride exposure. From this, a publication in the scientific journal ‘Toxicology and Applied Pharmacology’ is being prepared. The outcome of this study shows that, below 100 ppm, there is no methylene chloride related risk of cancer formation. It is shown that there is no genotoxic mode of action for cancer formation by methylene chloride, but that adverse effects only appear as a result of (cytotoxic) high concentration exposure that is far above current occupational exposure limits (EU OEL = 100 ppm/8 h). These results support current threshold setting and provide solid argumentation in case of further regulatory action and counter claims of cancer formation at low exposure levels. ☑
Chlorine Production 2016

2016 European chlorine production was reported at 9,461 kt, 1.2% below the 2015 level and 11.6% below the 2007 peak level. This means there has been no real recovery. In fact, since 2007, there has been a gradual decrease in the European chlorine production level.

The utilization rate was 79.1%, compared to 80.9% in 2015.

“There is a continued need for EU policy makers to support the competitiveness of the European chemical manufacturing industry.”

The overall chemical industry in Europe recorded a growth of 0.4% in 2016 according to European Chemical Industry Council (Cefic) figures. This means that the chlorine industry is not following the general growth of the chemical industry in Europe and the rest of the world. With the developments of the competing regions outside Europe, there is a continued need for EU policymakers to support the competitiveness of the European chemical manufacturing industry.
Chlorine and caustic soda applications 2016

European Chlorine Applications 2016

<table>
<thead>
<tr>
<th>Application</th>
<th>Kilotonnes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvents & Epichlorohydrin</td>
<td>788</td>
<td>8.6%</td>
</tr>
<tr>
<td>Chloromethanes</td>
<td>414</td>
<td>4.5%</td>
</tr>
<tr>
<td>Other Organics</td>
<td>933</td>
<td>10.2%</td>
</tr>
<tr>
<td>Inorganics</td>
<td>1,134</td>
<td>12.4%</td>
</tr>
<tr>
<td>PVC</td>
<td>2,965</td>
<td>32.5%</td>
</tr>
<tr>
<td>Isocyanates & Oxygenates</td>
<td>2,901</td>
<td>31.8%</td>
</tr>
</tbody>
</table>

European Caustic Soda Applications 2016

<table>
<thead>
<tr>
<th>Application</th>
<th>Kilotonnes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphates</td>
<td>90</td>
<td>1.0%</td>
</tr>
<tr>
<td>Rayon</td>
<td>125</td>
<td>1.3%</td>
</tr>
<tr>
<td>Mineral oils</td>
<td>167</td>
<td>1.8%</td>
</tr>
<tr>
<td>Soaps</td>
<td>329</td>
<td>3.5%</td>
</tr>
<tr>
<td>Bleach</td>
<td>356</td>
<td>3.8%</td>
</tr>
<tr>
<td>Water treatment</td>
<td>445</td>
<td>4.7%</td>
</tr>
<tr>
<td>Alumina & other metals</td>
<td>408</td>
<td>4.3%</td>
</tr>
<tr>
<td>Food Industry</td>
<td>513</td>
<td>5.5%</td>
</tr>
<tr>
<td>Other inorganics</td>
<td>1,132</td>
<td>12.1%</td>
</tr>
<tr>
<td>Pulp, Paper Cellulose</td>
<td>1,242</td>
<td>13.2%</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>1,567</td>
<td>16.7%</td>
</tr>
<tr>
<td>Organics</td>
<td>3,011</td>
<td>32.1%</td>
</tr>
</tbody>
</table>
Chlorine Production Plants

January 2017

<table>
<thead>
<tr>
<th>Country</th>
<th>Company</th>
<th>Site</th>
<th>Nameplate Capacity (000 tonnes chlorine)</th>
<th>Hg</th>
<th>D</th>
<th>M</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Austria</td>
<td>Donau Chemie</td>
<td>Brückl</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Austria Total</td>
<td></td>
<td></td>
<td>74</td>
<td>0</td>
<td>0</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>3 Belgium</td>
<td>INOVYN</td>
<td>Antwerp</td>
<td>458</td>
<td>90</td>
<td>174</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td>4 Belgium</td>
<td>INOVYN</td>
<td>Jemeppe</td>
<td>174</td>
<td></td>
<td></td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>5 Belgium</td>
<td>Vynova</td>
<td>Tessenderlo *</td>
<td>400</td>
<td>205</td>
<td></td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>Belgium Total</td>
<td></td>
<td></td>
<td>1,032</td>
<td>295</td>
<td>0</td>
<td>867</td>
<td>0</td>
</tr>
<tr>
<td>6 Czech Republic</td>
<td>Spolana</td>
<td>Neratovice</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>7 Czech Republic</td>
<td>Spolchemie</td>
<td>Usti</td>
<td>61</td>
<td></td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Czech Republic Total</td>
<td></td>
<td></td>
<td>196</td>
<td>196</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8 Finland</td>
<td>AkzoNobel</td>
<td>Oulu</td>
<td>40</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>9 Finland</td>
<td>Kemira</td>
<td>Joutseno</td>
<td>75</td>
<td></td>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Finland Total</td>
<td></td>
<td></td>
<td>115</td>
<td>40</td>
<td>0</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>10 France</td>
<td>PPChemicals</td>
<td>Thann</td>
<td>43</td>
<td></td>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>11 France</td>
<td>VENCOREX</td>
<td>Pont de Claix</td>
<td>170</td>
<td></td>
<td>170</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>12 France</td>
<td>Kem One</td>
<td>Fos</td>
<td>340</td>
<td></td>
<td>179</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>13 France</td>
<td>Arkema</td>
<td>Jarrie</td>
<td>72</td>
<td></td>
<td></td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>14 France</td>
<td>Kem One</td>
<td>Lavora</td>
<td>363</td>
<td>164</td>
<td>199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 France</td>
<td>Arkema</td>
<td>St Auban</td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 France</td>
<td>MSSA</td>
<td>Pomblière</td>
<td>42</td>
<td></td>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Company</td>
<td>Site</td>
<td>Nameplate Capacity (000 tonnes chlorine)</td>
<td>Hg</td>
<td>D</td>
<td>M</td>
<td>Others</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>--</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>--------</td>
</tr>
<tr>
<td>France</td>
<td>PC Harbonnieres</td>
<td>Harbonnieres</td>
<td>23</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>INOVYN</td>
<td>Tavaux</td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>France</td>
<td>PC Loos</td>
<td>Loos</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France Total</td>
<td></td>
<td></td>
<td>1,451</td>
<td>205</td>
<td>548</td>
<td>656</td>
<td>42</td>
</tr>
<tr>
<td>Germany</td>
<td>BASF</td>
<td>Ludwigshafen</td>
<td>385</td>
<td>170</td>
<td>215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Covestro</td>
<td>Dormagen</td>
<td>480</td>
<td></td>
<td>400</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Covestro</td>
<td>Leverkusen</td>
<td>390</td>
<td></td>
<td></td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Covestro</td>
<td>Uerdingen</td>
<td>260</td>
<td></td>
<td></td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Covestro</td>
<td>Brunsbutfel</td>
<td>210</td>
<td></td>
<td></td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Dow</td>
<td>Schkopau</td>
<td>250</td>
<td></td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Vinnolit</td>
<td>Knapsack</td>
<td>250</td>
<td></td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>CABB GmbH</td>
<td>Gersthofen</td>
<td>52</td>
<td></td>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Dow</td>
<td>Stade</td>
<td>1,585</td>
<td>1,030</td>
<td>555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>AkzoNobel</td>
<td>Ibbenburen</td>
<td>125</td>
<td></td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>AkzoNobel</td>
<td>Bitterfeld</td>
<td>99</td>
<td></td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Evonik Industries</td>
<td>Lülsdorf</td>
<td>137</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>AkzoNobel</td>
<td>Frankfurt</td>
<td>250</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>INOVYN</td>
<td>Rheinberg</td>
<td>220</td>
<td>110</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>VESTOLIT</td>
<td>Marl</td>
<td>260</td>
<td></td>
<td>260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Vinnolit</td>
<td>Gendorf</td>
<td>180</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Wacker Chemie</td>
<td>Burghausen</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>LEUNA-TENSIDE</td>
<td>Leuna</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany Total</td>
<td></td>
<td></td>
<td>5,198</td>
<td>432</td>
<td>1,140</td>
<td>3,336</td>
<td>290</td>
</tr>
<tr>
<td>Greece</td>
<td>Kapachim</td>
<td>Inofita Viotias</td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>Unilever Knorr</td>
<td>Maroussi</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece Total</td>
<td></td>
<td></td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Hungary</td>
<td>Borsodchem</td>
<td>Kazincbarcika</td>
<td>323</td>
<td>131</td>
<td>192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary Total</td>
<td></td>
<td></td>
<td>323</td>
<td>131</td>
<td>0</td>
<td>192</td>
<td>0</td>
</tr>
<tr>
<td>Ireland</td>
<td>MicroBio</td>
<td>Fermoy</td>
<td>9</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland Total</td>
<td></td>
<td></td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Italy</td>
<td>Altair Chimica</td>
<td>Volterra</td>
<td>55</td>
<td></td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Società Chimica Bussi S.p.A.</td>
<td>Bussi</td>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Ing. Luigi Conti Vecchi</td>
<td>Assemini</td>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>INOVYN</td>
<td>Rosignano</td>
<td>150</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>HydroChem Italia</td>
<td>Pieve Vergonte</td>
<td>42</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Fater</td>
<td>Campochiaro</td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy Total</td>
<td></td>
<td></td>
<td>317</td>
<td>42</td>
<td>0</td>
<td>275</td>
<td>0</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>AkzoNobel</td>
<td>Botlek</td>
<td>637</td>
<td></td>
<td>637</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Netherlands</td>
<td>AkzoNobel</td>
<td>Delfzijli</td>
<td>121</td>
<td></td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Sabic</td>
<td>Bergen op Zoom</td>
<td>89</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Netherlands Total</td>
<td></td>
<td></td>
<td>847</td>
<td>0</td>
<td>0</td>
<td>847</td>
<td>0</td>
</tr>
<tr>
<td>Country</td>
<td>Company</td>
<td>Site</td>
<td>Nameplate Capacity (000 tonnes chlorine)</td>
<td>Hg</td>
<td>D</td>
<td>M</td>
<td>Others</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------</td>
<td>-----------------------</td>
<td>--</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>55 Norway</td>
<td>Borregaard</td>
<td>Sarpsborg</td>
<td>46</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56 Norway</td>
<td>Elkem</td>
<td>Bremanger</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57 Norway</td>
<td>INOVYN</td>
<td>Rafnes</td>
<td>280</td>
<td>280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway Total</td>
<td></td>
<td></td>
<td>336</td>
<td>0</td>
<td>0</td>
<td>336</td>
<td>0</td>
</tr>
<tr>
<td>58 Poland</td>
<td>PCC Rokita</td>
<td>Brzeg Dolny</td>
<td>150</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 Poland</td>
<td>Anwil</td>
<td>Wloclawek</td>
<td>214</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland Total</td>
<td></td>
<td></td>
<td>364</td>
<td>0</td>
<td>0</td>
<td>364</td>
<td>0</td>
</tr>
<tr>
<td>62 Portugal</td>
<td>CUF</td>
<td>Estarreja</td>
<td>122</td>
<td>78</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal Total</td>
<td></td>
<td></td>
<td>122</td>
<td>0</td>
<td>0</td>
<td>78</td>
<td>44</td>
</tr>
<tr>
<td>91 Romania</td>
<td>Oltchim</td>
<td>Rimnicu Valcea</td>
<td>105</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92 Romania</td>
<td>Chimcomplex</td>
<td>Borzesti</td>
<td>96</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania Total</td>
<td></td>
<td></td>
<td>201</td>
<td>0</td>
<td>0</td>
<td>201</td>
<td>0</td>
</tr>
<tr>
<td>63 Slovak Republic</td>
<td>CUF</td>
<td>Estarreja</td>
<td>122</td>
<td>78</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovak Republic Total</td>
<td></td>
<td></td>
<td>76</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88 Slovenia</td>
<td>TKI Hrastnik</td>
<td>Hrastnik</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia Total</td>
<td></td>
<td></td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>64 Spain</td>
<td>Electroquimica Onubense</td>
<td>Huelva/Palos</td>
<td>48</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 Spain</td>
<td>Ercros</td>
<td>Sabinanigo</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66 Spain</td>
<td>Ercros</td>
<td>Vilaseca</td>
<td>190</td>
<td>135</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67 Spain</td>
<td>Electroquimica de Hernani</td>
<td>Hernani</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68 Spain</td>
<td>ELNOSA</td>
<td>Pontevedra/Lourizan</td>
<td>34</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69 Spain</td>
<td>Ercros</td>
<td>Flix</td>
<td>78</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 Spain</td>
<td>Quimica del Cinca</td>
<td>Monzon</td>
<td>38</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71 Spain</td>
<td>INOVYN</td>
<td>Martorell</td>
<td>218</td>
<td>218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 Spain</td>
<td>Solvay</td>
<td>Torrelavega</td>
<td>63</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain Total</td>
<td></td>
<td></td>
<td>729</td>
<td>576</td>
<td>0</td>
<td>153</td>
<td>0</td>
</tr>
<tr>
<td>75 Sweden</td>
<td>INOVYN</td>
<td>Stenungsund</td>
<td>120</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden Total</td>
<td></td>
<td></td>
<td>120</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>77 Switzerland</td>
<td>CABB AG</td>
<td>Pratteln</td>
<td>47</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland Total</td>
<td></td>
<td></td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>98 UK</td>
<td>Runcorn MCP</td>
<td>Runcorn</td>
<td>430</td>
<td>430</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85 UK</td>
<td>Brenntag</td>
<td>Thetford</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97 UK</td>
<td>Industrial Chemicals Ltd</td>
<td>West Thurrock</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK Total</td>
<td></td>
<td></td>
<td>452</td>
<td>0</td>
<td>0</td>
<td>452</td>
<td>0</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td></td>
<td></td>
<td>12,055</td>
<td>2,113</td>
<td>1,688</td>
<td>8,008</td>
<td>376</td>
</tr>
</tbody>
</table>

PER PROCESS

<table>
<thead>
<tr>
<th>Process</th>
<th>Hg = mercury</th>
<th>M = membrane</th>
<th>D = diaphragm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others</td>
<td>“Others” include electrolysis of HCl to Cl₂, ODC and or molten salt electrolysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non Euro Chlor members are indicated in italic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Total combined production capacity of the Tessenderlo site permit = 400 kt Cl₂/yr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“It’s always satisfying to see a dog leave the refuge and begin a happier chapter in its life – but I know its kennel will not be vacant for long…”

Hypochlorite and other chlor-alkali chemicals help keep animal sanctuaries clean and their inhabitants healthy.

“There is undoubtedly violence around, this is why we policemen have protective gear, but there is so much gratitude in the community. It really makes it easy to get out of bed in the morning…”

Polycarbonate face shields and Kevlar® body armour are chlorine things.

“Fighting fires is extremely intense. The level of pressure is equalled only by the sense of achievement…”

Fire, heat, smoke and water are no match for polyurethane and polycarbonate materials, all based on chlor-alkali building blocks.
The “17 successes” Communication

Euro Chlor is pleased to announce the start of a new communications initiative that highlights the benefits that chlorine, caustic soda and hydrogen provide to European workers. Called the ‘17 successes’ programme, over the next few years Euro Chlor will publish profiles of real people whose job is made safer, healthier or more efficient thanks to our products.

From the 2.7 million European firefighters protecting themselves with advanced polymers to the animal carers who keep shelters clean with our industries derived products, chlor-alkali chemistry helps in their success at work. Amongst a wide range of jobs, we will present 17 such biographies to commemorate chlorine’s special position on the periodic table of elements. Discover the story of the fireman who is a hero to his son and the policeman’s pride in serving his community, both supported by chlor-alkali chemistry!

17 successes: A communications initiative highlighting the socio-economic contribution of the chlorine industry and the diverse applications of chlorine-derived products.
New science dossier: health implications of water chlorination

Euro Chlor has published a new Science Dossier on “Human health aspects of halogenated organic by-products from use of active chlorine”. This dossier reviews the health implications of those by-products that form when chlorine solutions are used for the disinfection of drinking water, swimming pools and in cleaning.

Some of the active chlorine used can react with organic materials to create disinfection by-products (DBPs). The health implications of DBPs have been of particular interest to health professionals and regulators due to concerns over their cancer and/or asthma causing potential.

This new dossier reviews over 140 scientific papers and emphasises that, with correct management and use of these essential biocides, such DBP formation can be minimised. It also agrees with the World Health Organisation, who emphasise that standards of microbial protection of potable water must not be compromised because of concerns about potential risks from DBPs.

The new Science Dossier can be downloaded from the Euro Chlor website and complements a 2010 document on the environmental impact of these by-products.

Euro Chlor at international science conference in Brussels

Euro Chlor represented our industry in May 2017 at SETAC Europe; an annual international congress on environmental chemistry that brought together over 1,740 academics, regulators and industry people to discuss the latest scientific findings.

The 2017 edition took place in Brussels. Many of the presentations and posters highlighted current challenges in the regulatory assessment of persistent, bioaccumulative and toxic (PBT) substances: a key issue for some of our sector groups!

Euro Chlor again had a display where our scientific library was available for collection. Here, documents on research integrity, life-cycle assessment and chlor-alkali sustainability were particularly popular.

Next year’s event will take place from 13-17 May 2018 in Rome.
Social media activities expand to Facebook

Euro Chlor now has a presence on the world’s largest social media platform, Facebook, on which 76 member companies and technical correspondents also appear. Euro Chlor’s Facebook page allows people to read more about our members, discover our activities, view our videos and learn how chlorine things benefit their daily lives. The page is available at www.facebook.com/eurochlor.

On Twitter, Euro Chlor continues to post twice a week on the six key areas (official positions, website promotion, science news, member news, earth days and a random fact on the 17th of the month).

Euro Chlor is also using social media at events. At the recent Technology Conference, an interactive wall was available where participants could see what people on social media were saying. They could also follow the meeting via the special conference hashtag (#eurochlor2017). Such activities effectively tripled our followers on Facebook, with our messages reaching nearly 2,000 people in just 3 days.

Euro Chlor’s YouTube Channel’s continuing popularity

Two new videos have been released in the last year.

The first shows animated avatars of the Euro Chlor Executive Director and Chairman as they describe the essential nature of chlor-alkali chemistry and the challenges our industry faces. It also acts as a springboard for the 17 successes initiative; demonstrating just how many European jobs rely on chlor-alkali chemistry for safety and efficiency.

The second video is a training video that details how, due to their production method, chlorinated alkanes are unlikely to contain SCCP impurities (a phased-out substance in Europe). This will help authorities to better understand these versatile chemicals.

These new releases complement others on the channel, including the popular documentary “A world of opportunities”, which describes the everyday benefits of chlor-alkali chemistry. This particular video has had nearly 4,000 views since its release.
Corporate website
a key communication tool

Last year, the Euro Chlor corporate website received over 208,000 page views across 86,000 separate visits. People are also accessing the site using modern smart phone and tablet technologies (22% and 4% of visitors respectively) after the site was optimised for mobile devices around two years ago.

The most popular pages are in “The chlorine universe” chapter which have popular animations of the three production process technologies. The communications corner is the second most consulted (13,000 views/year).

Through our site’s ‘download centre’, thousands of downloads of our publications occur each year. Every month, nearly 100 visitors learn how they can produce small quantities of chlorine in their home kitchen.

208,000 pages are viewed each year
50% of all visitors are younger than 34 years

7,000 Euro Chlor publications downloaded per year

The Euro Chlor Federation

In Europe, 35 Members of Euro Chlor produce chlorine at 65 manufacturing locations in 21 countries. About 7,500 jobs are directly related to European production sites of chlorine and its co-product caustic soda. When the numerous downstream activities are also taken into consideration, like the PVC sector, polyurethane production, the aluminium sector, construction etc., the sum of direct and indirect employment is many times higher.

In addition to the chlor-alkali producers, Euro Chlor also has 57 Associate Members and 55 Technical Correspondents. These include national chlorine associations and working groups, suppliers of equipment, materials and services as well as downstream users and producers outside Europe.

Euro Chlor was founded 64 years ago (1953) as a production-oriented, technical organization. The association was officially named “Euro Chlor” in 1989 in order to provide the sector with strengthened scientific, advocacy and communications capabilities. Since then, a strong focus has been placed on sound science based arguments coupled with continual health, safety and environmental improvements, which are complemented by open and transparent communications with all stakeholders. One of Euro Chlor’s major objectives is to obtain the full recognition of the benefits of chlorine chemistry.

Euro Chlor members operate 65 manufacturing locations in 21 countries
Management Committee

Chairman: Dieter Schnepel
Dow Deutschland Anlagengesellschaft mbH

Vice Chairman: Vacancy

Jürgen Baune (Akzo Nobel Industrial Chemicals BV)
Wouter Bleux (Inovyn)
Hanno Brümmer (Covestro AG)
Agustín Franco Blasco (Ercros SA)
Jaroslav Pancék (PCC Rokita SA)
Stefan Plaß (Evonik Performance Materials GmbH)
Hans-Christoph Porth (VESTOLIT GmbH)
Daniel Tamchyna (Spolek pro chemickou a hutní výrobu, a.s.)
Jacques Terjan (Vencorex)
Johan Van Den Broeck (VYNOVA International)
Thomas Wehlage (BASF SE)
Michael Winhold (Vinnolit GmbH)

Full Member Companies

Akzo Nobel Industrial Chemicals BV
Altair Chimica SpA
Anwil SA
Arkema SA
BASF SE
Borregaard AS
BorsodChem Zrt
CABB AG
CABB GmbH
Chimcomplex SA
Covestro AG
CUF - Químicos Industriais SA
Donau Chemie AG
Dow Deutschland Anlagengesellschaft mbH
Electroquímica de Hernani
Electroquímica del Noroeste SA
Electroquímica Onubense SL
Ercros SA
Evonik Performance Materials GmbH
Ing. Luigi Conti Vecchi SpA
INOVYN ChlorVinyls Limited
International Chemical Investors Group (ICIG) – including HydroChem Italia Srl, PPC - Potasse et Produits Chimiques SAS, and VYNOVA International
Kemira Oyj
MSSA SAS
PCC Rokita SA
Produits Chimiques de Loos
Produits Chimiques d’Harbonnières
Química del Cinca SA
Società Chimica Bussi SpA
Solvay
Spolana a.s.
Spolek pro chemickou a hutní výrobu, a.s. (Spolchemie)
Vencorex
VESTOLIT GmbH
Vinnolit GmbH
Associate Member Companies

Adama Makhtshim Ltd
Alchemist International Ltd
ANE - Asociación Nacional de Electroquímica
Angelini A.C.R.A.F. SpA
AQUAGROUP AG
Arch Chemicals SAS
Asahi Kasei Chemicals Corp.
Atana Limited
Axiall, LLC
Banner Chemicals Limited
BARGCHEMICALS SRL
Biomca Química SL
Bochemie Inc
Brenntag UK Ltd
BWT AG
Caffaro Brescia SRL
CBee Europe Ltd
Chemieanlagenbau Chemnitz GmbH
Chemoform AG
CIA - Chemicals Industries Association Ltd
De Nora Deutschland GmbH
essenscia ASBL
EuSalt aisbl – European Salt Producers’ Association
Fater SpA
FEDERCHIMICA - Federazione Nazionale dell’ Industria Chimica
GAZECHIM
GHG Gerling, Holz & Co Handels GmbH
Haixing Eno Chemical Co., Ltd.
HELM AG
IKEM - Innovation and Chemical Industries in Sweden
Industrial Chemicals Limited
INQUIDE SA
K+S Entsorgung GmbH
Kapachim SA
Leuna Tenside GmbH
LOMBARDA H Srl
Lanza AG
Nankai Chemical Industry Co., Ltd
NCP Chlorm (PTY) Ltd
Nippon Soda
Novacid
Olin (Blue Cube Operations, LLC)
SCHP - Association of Chemical Industry of the Czech Republic Scienceindustries
Sinopec Jianghan Salt & Chemical Complex
Sojitz Europe plc
Syngenta Crop Protection Monthey SA
Syngenta Ltd
Teijin Aramid BV
ThyssenKrupp Uhde Chlorine Engineers GmbH
Tosoh Corporation
Unilever R&D Vlaardingen
VAN DEN HEUVEL WATertechnologie BV
VCI - Verband der Chemischen Industrie e. V.
Veltek Associates, Inc.
Vinyl Vegypari KFT
VNCI - Vereniging van de Nederlandse Chemische Industrie
Euro Chlor
Technical Correspondents

AGC Chemicals Europe Ltd.
www.agccee.eu.com

Applitek NV/SA
www.applitek.com

BATRECE INDUSTRIE AG
www.batrec.ch

BELL-O-SEAL VALVES P. LIMITED
www.bellowseal.com

Blackhall Engineering Limited
www.shawvalves.co.uk

Bluestar (Beijing) Chemical Machinery Co Ltd.
www.beijing-bluestar.com

Chemtec UK Limited
www.rmarmstrong.com

CHLORAN CHEMICAL PRODUCTION CO. (CCPC)
www.chloran.com

CONVE & AVS INC.
www.conveav.com

Coogee Chlor Alkali Pty Ltd.
www.coogee.com.au

Descote
www.descote.com

DSD Chemtech Projects & Services GmbH
www.dsd-chemtech.com

Econ Industries GmbH
www.econindustries.com

ERAMET SA
www.eramet.fr

Eynard Robin
www.groupe.eynardrobin.com

Farman Petrochemical Industries
www.irfpc.com

Flowstream International Limited
www.flowstream.co.uk

F.M.I. SPA UNIPERSONALE
www.fmi-spa.com

Garlock GmbH
www.garlock.eu.com

Huntsman (Europe) BVBA
www.huntsman.com

ISGEC
www.isgec.com

IXOM (formerly ORICA Chemicals)
www.ixom.com

Jiangsu Ancan Technology Co., Ltd.
www.ancan-cn.com

Kronos Europe NV
www.kronostol2.com

KSB-SISTO ARMATUREN SA
www.sisto.lu

KUROTEC-KTS Kunststofftechnik Stade GmbH
www.kurotec-kts.de

Lubrizol Advanced Materials Europe BVBA
www.lubrizol.com

Melbourne Water
www.melbournewater.com.au

MERSEN PGY SAS
www.mersen.com

Micro Bio Ireland Ltd.
www.micro-bio.ie

Nirou Chlor Co.
www.nirouchlor.com

Nuberg Engineering Limited
www.nubergindia.com

Occidental Chemical Belgium BVBA AZ
www.oxy.com

PERMASCAND AB
www.permascand.com

Pfeiffer Chemie-Armaturenbau GmbH
www.pfeiffer-armaturen.com

Phönix Armaturen-Werke
www.phoenix-armaturen.de

Powell Fabrication & Manufacturing Inc.
www.powellfab.com

PRINCE RUBBER & PLASTICS CO., INC.
www.princerp.com

PROFILCO BV
www.profilco.nl

R2
www.r2000.com

Remondis QR GmbH
www.remondis-qr.de

RESTORE
www.restore.eu

Richter Chemie-Technik GmbH
www.richter-ct.com

National Institute for Public Health and the Environment (RIVM) – Centre for External Safety (CEV)
www.rivm.nl

SALCO PRODUCTS INC.
www.salcoproducts.com

Sasol Polymers
www.sasol.com

SAVINO BARBERA SRL
www.savinobarbera.com

Senior Ermeto
www.senior-aerospace-ermeto.com

SIEM - SUPRANITE
www.siem.fr

SITA REKEM
www.sita.fr

STEULER-KCH GMBH
www.steuler-kch.de

Technip France
www.technip.com

Tronox Pigments (Holland) BV
www.tronox.com

W.L. Gore & Associates GmbH
www.gore.com/sealants

Xomox International GmbH & Co. OHG – CRANE ChemPharma & Energy
www.cranecpe.com
Euro Chlor
Secretariat Staff

Dolf van Wijk
Executive Director
T +32 (0)2 676 73 70

Françoise Minne
Assistant
T +32 (0)2 676 73 54

Sébastien Gallet
ECSA Manager
T +32 (0)2 676 72 28

Marleen Pauwels
Science and Regulatory Affairs Director
T +32 (0)2 676 72 47

Chantal Peeters
Assistant
T +32 (0)2 676 74 01

Ton Manders
Technical and Safety Director
T +32 (0)2 676 73 36

Isabelle Coppens
Assistant
T +32 (0)2 676 73 91

Dirk Clotman
Communications Manager
T +32 (0)2 676 73 51

Hannane Haddouch
Assistant
T +32 (0)2 676 74 88

Richy Mariner
Science Manager
T +32 (0)2 676 73 61
Euro Chlor provides a focal point for the European chlor-alkali industry's drive to achieve a sustainable future through economically and environmentally sound manufacture and use of its products. Based in Brussels, the heart of the European Union, the federation works with national, European and international authorities to ensure that legislation affecting the industry is workable, efficient and effective. Furthermore, Euro Chlor communicates in a transparent way with all stakeholders and systematically highlights the benefits of chlorine based chemistry as well as the socio-economic importance of the chlor-alkali sector.

Euro Chlor represents 35 full member companies producing chlorine at 65 manufacturing locations in 21 European countries. About 7,500 jobs are directly related to these European production sites of chlorine and its co-product caustic soda.