

Euro Chlor Risk Assessment for the Marine Environment OSPARCOM Region - North Sea

Monochlorophenols

February 2002



# EURO CHLOR RISK ASSESSMENT FOR THE MARINE ENVIRONMENT

### **MONOCHLOROPHENOLS**

# **OSPARCOM Region – North Sea**

### **EXECUTIVE SUMMARY**

Euro Chlor has voluntarily agreed to carry out risk assessment of 25 chemicals related to the chlorine industry, specifically for the marine environment and according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Documents of the EU Existing Substances Regulation (793/93).

The study consists of the collection and evaluation of data on effects and environmental concentrations. Basically, the effect data are derived from laboratory toxicity tests and exposure data from analytical monitoring programs. Finally the risk is indicated by comparing the "predicted environmental concentrations" (PEC) with the "predicted no effect concentrations" (PNEC), expressed as a hazard quotient for the marine aquatic environment.

To determine the PNEC value, three different trophic levels are considered: aquatic plants, invertebrates and fish.

In the case of chlorophenols (2 chlorophenol, 3 chlorophenol, 4 chlorophenol) 34 data for fish, 30 data for invertebrates and 15 data for algae have been evaluated according to the quality criteria recommended by the European authorities. As toxicity results on aquatic organisms seem to be comparable for the three isomers considered, data were pooled for the final PNEC calculation. Both acute and chronic toxicity studies have been taken into account and the appropriate assessment factors have been used to define a final PNEC<sub>water</sub> value of 30  $\mu$ g/l, and a PNEC<sub>sed</sub> value of 258  $\mu$ g/kg.

The available monitoring data, applied to various surface waters and sediments, were used to calculate PECs. As for ecotoxicological data, the three isomers were considered equivalent as regarded to their environmental concentrations. The review of the available data permitted us to distinguish two situations, a typical case and a worst case, in which values of PECs retained were, for water <0.1 and 0.5  $\mu$ g/l respectively, and for sediments 50 and 125  $\mu$ g/kg respectively. The calculated PEC/PNEC ratios give safety margins of 50 to 333 for water, and 2 to 5 for sediments. Dilution within the sea would of course increase these safety margins.

Moreover, all the data concerning biodegradation and bioaccumulation of monochlorophenols agreed to state that these substances are neither persistent nor bioaccumulable. Thus it can be concluded that the present use of monochlorophenols does not represent a risk to the aquatic environment.

# 1. <u>INTRODUCTION : PRINCIPLES AND PURPOSES OF EUROCHLOR RISK</u> <u>ASSESSMENT</u>

Within the EU a programme is being carried out to assess the environmental and human health risks for "existing chemicals", which also include chlorinated chemicals. In due course the most important chlorinated chemicals that are presently in the market will be dealt with in this formal programme. In this activity Euro Chlor members are cooperating with member state rapporteurs. These risk assessment activities include human health risks as well as a broad range of environmental scenarios.

Additionally Euro Chlor has voluntarily agreed to carry out limited risk assessments for 25 prioritised chemicals related to the chlorine industry. These compounds are on lists of concern of European Nations participating in the North Sea Conference. The purpose of this activity is to explore if chlorinated chemicals presently pose a risk to the marine environment especially for the North Sea situation. This will indicate the necessity for further refinement of the risk assessments and eventually for additional risk reduction programmes.

These risk assessments are carried out specifically for the marine environment according to principles given in <u>Appendix 1</u>. The EU methodology is followed as laid down in the EU risk assessment Regulation (1488/94) and the Guidance Documents of the EU Existing Substances Regulation (793/93).

The exercise consists in the collection and evaluation of data on effects and environmental concentrations. Basically, the effect data are derived from laboratory toxicity tests and exposure data from analytical monitoring programs. Where necessary the exposure data are backed up with calculated concentrations based on emission models.

Finally the risk is indicated by comparing the "predicted environmental concentrations" (PEC) with the "predicted no effect concentrations" (PNEC), expressed as a hazard quotient for the marine aquatic environment.

# 2. <u>DATA SOURCES</u>

The data used in this risk assessment activity are primarily derived from the data given in the published literature and data from IUCLID (2000).

#### 3. **COMPOUND IDENTIFICATION**

#### 3.1. **Description**

| IUPAC name    | 2-chlorophenol | 3-chlorophenol | 4-chlorophenol |
|---------------|----------------|----------------|----------------|
| CAS number    | 95-57-8        | 108-43-0       | 106-48-9       |
| EINECS number | 202-433-2      | 203-582-6      | 203-402-6      |
| Annex I entry | 604-008-00-0   | 604-008-00-0   | 604-008-00-0   |

Monochlorophenols have the following formula: C<sub>6</sub>H<sub>5</sub>OCl

and structure:



2-chlorophenol

4-chlorophenol

Fig. 1 Structure of the monochlorophenols.

#### 3.2. **EU labelling**

According to Annex I of Directive 93/72/EEC (16.11.98 - 24th TPA), the monochlorophenols are classified as Xn, R20/21/22 (harmful by inhalation, in contact with skin, and if swallowed) and N, R51/53 (toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment).

#### 4. **PHYSICO-CHEMICAL PROPERTIES**

Table 1 gives the major chemical and physical properties of the compounds which were adopted for the purpose of this risk assessment. The molecular weight of chlorophenols is 128.6 g/mol.

| IUPAC name            | 2-chlorophenol              | 3-chlorophenol              | 4-chlorophenol              |
|-----------------------|-----------------------------|-----------------------------|-----------------------------|
| Melting point         | 9.3 °C                      | 33.5 °C                     | 43 °C                       |
| Boiling point         | 175 °C                      | 214 °C                      | 217 °C                      |
| Relative density      | 1.257 at 25 °C              | 1.268 at 25°C               | 1.306 at 20 °C              |
| Vapour pressure       | 1.39 hPa at 25 °C           | 1.25 hPa at 25 °C           | 0.51 hPa at 25 °C           |
| Water solubility      | 28500 mg/l at 20 °C         | 26000 mg/l at 20 °C         | 27100 mg/l at 20 °C         |
| РКа                   | 8.48 at 25 °C               | 9.12 at 25°C                | 9.38 at 25 °C               |
| Partition coefficient | Log Kow = 2.15              | Log Kow = 2.50              | Log Kow = 2.39              |
| Henry's Law Constant  | 0.63 Pa.m <sup>3</sup> /mol | 0.62 Pa.m <sup>3</sup> /mol | 0.24 Pa.m <sup>3</sup> /mol |

Table 1Physico-chemical properties of monochlorophenols

# 5. <u>COMPARTMENT OF CONCERN BY MACKAY LEVEL I MODEL</u>

The risk assessment presented here focuses on the aquatic marine environment, with special attention to the North Sea conditions where appropriate. Although this risk assessment only focuses on one compartment, it should be borne in mind that all environmental compartments are inter-related.

An indication of the partitioning tendency of a compound can be defined using Mackay level I calculation obtained through the ENVCLASS software distributed by the "Nordic Council of Ministers". This model describes the ultimate distribution of the compound in the environment (Mackay & Patterson, 1990; Pedersen *et al.*, 1994).

The results are valuable particularly in describing the potency of a compound to partition between water, air or sediment. Practically, it is an indicator of the potential compartments of concern. The data used for the calculation and calculation details are given in *Appendix 2* and the results are summarised in Table 2.

Table 2 : Partition of chlorophenols into different environmental compartments according to Mackay level I

| Compartment | %                                            |      |      |  |  |  |
|-------------|----------------------------------------------|------|------|--|--|--|
|             | 2-chlorophenol 3-chlorophenol 4-chlorophenol |      |      |  |  |  |
| Air         | 17.7                                         | 17.2 | 7.6  |  |  |  |
| Water       | 80.6                                         | 79.0 | 89.1 |  |  |  |
| Soil        | 0.9                                          | 2.0  | 1.7  |  |  |  |
| Sediment    | 0.8                                          | 1.8  | 1.6  |  |  |  |

# 6. <u>USE AND APPLICATIONS</u>

## 6.1. <u>Production and sales</u>

### 2-chlorophenol:

About 2000 to 3000 tonnes per year are produced at two sites, where effluents are partly released to a river flowing to the Mediterranean Sea. However, the production is for nearly 100 % used as an intermediate for further synthesis in the North Sea area..

### **3-chlorophenol:**

No IUCLID file is available for this compound which is produced at less than 1000 tonnes per year by producers in Europe.

### 4-chlorophenol:

About 2000 to 3000 tonnes per year are produced at two sites where effluents are partly released to a river flowing to the Mediterranean Sea. However, the production is for nearly 70 % used as an intermediate for further synthesis in the North Sea area at three sites using 50%, 15% and 5%, respectively. The remaining 30 % of the production are exported outside Europe.

# 6.2. <u>Main uses</u>

The only use categories are industrial chemicals, chemicals used in synthesis and intermediates.

### 6.3. <u>Emissions</u>

Emissions from the production of 2-chlorophenol were inventarised in a survey by Euro Chlor, 1976, covering almost the entire chlor-alkali production in Western Europe. The emissions in 1985 were 3200 kg and 150 kg to air and water, respectively. For 1997 these amounts fell to 0 and 70 kg to air and water, respectively. 4-chlorophenol was only emitted to water, with an amount of 2000 kg in 1985 and 70 kg in 1997.(Euro Chlor, COCEM, 2002).

### 6.4. <u>Natural occurrence and other sources</u>

Many chlorinated phenols are produced by nature (Euro Chlor, 1995). 2,4dichlorophenol has been shown to be naturally produced by a soil fungus (*Penicillium* sp.) (Gribble, 1994). Experiments by Baker & Mayfield (1980) in surface water and sediment without microflora adaptation have shown that the primary degradation of 2,4-DCP was 74 % after 10 days in water and 73 % after 15 to 30 days in sediment, giving 4-chlorophenol in the first step. Therefore, it can reasonably be assumed that at least also 4-chlorophenol is naturally produced.

# 7. <u>EFFECT ASSESSMENT</u>

As a first approach, this chapter mainly considers the following three trophic levels: aquatic plants, invertebrates and fish.

The evaluation of data was conducted according to the quality criteria recommended by the European authorities (Commission Regulation 1488/94/EEC). The evaluation criteria are given in <u>Appendix 1</u>.

Data from all available sources, including company data and data from the open literature, were collected and incorporated into the HEDSET for chlorophenols, including their references (updated version of 1/96).

It is necessary to distinguish the acute studies  $(LC_{50}/EC_{50})$  from chronic studies (NOEC/LOEC) In <u>Appendix 3</u>, the data are ranked based on class (fish, invertebrates, algae), criterion (acute/chronic), environment (freshwater/saltwater) and validity (1, 2, 3, 4) as required in EU risk assessments (TGD, 1996).

# 7.1. <u>2-chlorophenol</u>

In total, 18 different data for fish, 11 data for aquatic invertebrates and 4 different data for algae have been evaluated. For each of the taxonomic groups considered, respectively 7, 4 and 2 were considered valid, 9, 4 and 2 were judged valid but considered with care and 2, 3 and 0 were not valid for risk assessment.

# 7.1.1. Marine fish

Three short-term studies were reported for 2 species. The  $LC_{50}$  values were very close to each other, between 6.3 and 7.0 mg/l. The lowest 96 h-LC<sub>50</sub> is 6.29 mg/l for <u>Platichthys flesus</u> (validity 2, nominal concentrations, closed semi-static test systems, Smith *et al.*, 1994).

# 7.1.2. Freshwater fish

Ten valid short term toxicity studies were reported for 5 species with survival as determining criterion. The lowest 96 h-LC<sub>50</sub> was 2.6 mg/l for *Oncorhynchus mykiss* (but this paper has been cited in Krijgsheld and Van der Gen (1986), so could not be checked: validity 4, Sletten, 1972). The following lowest 96h-LC<sub>50</sub> was 6.6 mg/l (*Lepomis macrochirus*, validity 2, Buccafusco *et al.*, 1981). All other values range between 8.3 and 20.2 mg/l (Pickering & Hendersen, 1966; Dietz *et al.*, 1978; Phipps *et al.*, 1981; Saarikoski & Viluksela, 1981; Brook *et al.*, 1985). Two experiments with longer exposure times did not yield lower LC<sub>50</sub> values (6.3 and 11.2 mg/l for 7-8 days exposure, Phipps *et al.*, 1981 and Könemann & Musch, 1981, respectively). The freshwater data are well in line with the data for the marine species.

One long term toxicity study was reported for fish. In an ELS test the <u>4 week-NOEC</u> was <u>4 mg/l for *Pimephales promelas*</u> (validity 1, hatchability, survival and growth, flow-through systems, measured concentrations, LeBlanc, 1984b).

# 7.1.3. Marine invertebrates

### Crustaceans

One study on marine species was found. The <u>96 h lethal threshold, the lowest tested</u> concentration where lethality is observed, i.e. LOEC, or LCx, where x is generally <u>below 50 %</u>) was <u>5.2 mg/l for</u> <u>Crangon septemspinosa</u> (val. 1, measured concentrations, semi-static system, McLeese *et al.*, 1979).

# Other invertebrates

Short or long term toxicity studies on other marine invertebrates have not been found.

# 7.1.4. Freshwater invertebrates

# Crustaceans

Six valid studies report acute toxicity for *Daphnia*. The lowest 48 h-LC<sub>50</sub> was 2.6 mg/l (validity 2, static system, nominal concentrations, LeBlanc, 1980). All other LC<sub>50</sub> values range between 6.2 and 18 mg/l (Kopperman *et al.*, 1974;Trabalka & Burch, 1978; Randall & Knopp, 1980; Devillers & Chambon, 1986; Kühn *et al.*, 1989b). Two more studies on acute toxicity to *D. magna* report LC<sub>50</sub> values in the same range (Carlson, 1975; Knie *et al.*, 1983). However, since the original publications have not been checked, they were classified with validity 4. The 96h-LT found for a marine crustacean is well in line with these results.

Two studies report on the long-term toxicity for *D. magna*. The 3 week-NOEC was 0.5 mg/l (validity 1, reproduction and survival, semi-static closed system, measured concentrations, Kühn *et al.*, 1989b). A lower value was found, viz. a 14 days NOEC of 0.1mg/l (Shigeoka *et al.*, 1988b, reproduction, measured concentrations, protocol similar to OECD 202). However the tested concentration range was made with a geometric progression with a factor of 5. The OECD guideline 211 recommends a progression factor below and at maximum equal to 3.2. So the NOEC cannot be retained as a validated one. One possibility could be to take the LOEC and divide it by 2, according to the TGD, which is acceptable when the effect observed at LOEC is not greater than 20 %. As no raw data are given in the original paper, this could not be achieved and the study was attributed validity 3.

### *Other freshwater invertebrates*

No studies were available on the short or long term toxicity for other invertebrates.

# 7.1.5. Algae

Four studies report on the toxicity to four algae species (Huang & Gloyna, 1968; Shigeoka *et al.*, 1988a; Kühn & Pattard, 1990). The <u>lowest  $EC_{50}$  was 50 mg/l for</u> <u>Scenedesmus subspicatus</u> (validity 2, cell multiplication, nominal concentrations, static closed system, Kühn& Pattard, 1990). The same study reports a 48 h-EC<sub>10</sub> on multiplication of 24 mg/l, which may be interpreted as a NOEC. The highest  $EC_{50}$  value is 170 mg/l (*Chlorella vulgaris*, Shigeoka *et al.*, 1988a). No studies on marine species have been reported.

# 7.1.6. PNEC for aquatic organisms

Toxicity data are available for freshwater as well as for a few marine organisms. The results of the marine studies are always within the range of similar freshwater studies, therefore the data may be pooled for the derivation of  $PNEC_{water}$ .

In table 3 the lowest data for the major taxonomic groups are presented. There are  $EC/LC_{50}$  -values for the three trophic levels of the base-set, fish, *Daphnia* and algae. On the basis of acute data only, the PNEC could be derived from the lowest of these  $EC/LC_{50}$ -values with an assessment factor of 1000.

However, prolonged toxicity studies were also found for fish, *Daphnia* and algae, leading to an assessment factor of 10 to the lowest NOEC.

| Table 3: Summary of aquatic ecotoxicity data selected for the PNECwater derivation, w | with the |
|---------------------------------------------------------------------------------------|----------|
| appropriate assessment factors for 2-chlorophenol                                     |          |

| Data Set                                                                                                 | Assigned Assessment<br>Factor | Lowest Toxicity Values                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| At least 1 short-term LC <sub>50</sub><br>from each trophic level (fish,<br>daphnia , algae)             | 1000                          | <ul> <li><i>P. flesus</i>, 96h LC<sub>50</sub> 6.29<br/>mg/l (val. 2, Smith <i>et al.</i>,<br/>1994)</li> <li><i>Daphnia magna</i>, 48h LC<sub>50</sub><br/>2.6 mg/l (val. 2, LeBlanc,<br/>1980)</li> <li><i>Scenedesmus subspicatus</i>,<br/>48h EC<sub>50</sub> 50 mg/l (val. 2,</li> </ul> |
|                                                                                                          |                               | Kühn & Pattard, 1990)                                                                                                                                                                                                                                                                         |
| Long-term NOEC from at least<br>3 species representing three<br>trophic levels (fish, daphnia,<br>algae) | 10                            | - <i>P. promelas</i> , > 4w NOEC<br>mortality, growth 4 mg/l<br>(e.l.s., val. 1, LeBlanc,<br>1984b)                                                                                                                                                                                           |
|                                                                                                          |                               | <ul> <li>D. magna, 3w NOEC<br/>mortality, reproduction 0.5<br/>mg/l (val. 1, Kühn et al.,<br/>1989b)</li> <li>S. subspicatus 48h NOEC<br/>24 mg/l (val 2, Kühn &amp;<br/>Pattard 1990)</li> </ul>                                                                                             |

Application of an assessment factor of 1000 to the short term tests would result in a  $PNEC_{water}$  of 0.003 mg/l, whereas with an assessment factor of 10 to the lowest of the long term NOEC values,  $PNEC_{water}$  would be 0.05 mg/l.

# 7.2. <u>3-chlorophenol</u>

In total, 5 different data for fish, 2 data for aquatic invertebrates and 2 different data for algae have been evaluated. For each of the taxonomic groups considered respectively 1,

0 and 0 were considered valid, 2, 2 and 2 were judged valid but considered with care and 2, 0 and 0 were not valid for risk assessment.

# 7.2.1. Marine fish

One short term toxicity study was reported. The <u>96 h-LC<sub>50</sub></u> for *Platichthys flesus* was <u>3.99 mg/l</u> (validity 2, nominal concentrations, closed semi-static test systems, Smith *et al.*, 1994).

No long term toxicity studies were reported for marine fish species.

# 7.2.2. Freshwater fish

Three short term toxicity studies were reported for 3 species. The lowest 48 h-LC<sub>50</sub> was 3 mg/l for *Leuciscus idus melanotus* (validity 2, static system, measured concentrations, Dietz *et al.*, 1978). The two other studies reported LC<sub>50</sub> values between 3.5 and 10 mg/l (validity 4, Benoit-Guyod *et al.*, 1984 and Shumway & Palensky, 1973, respectively). In a longer term study the  $\geq$ 7d-LC<sub>50</sub> ranged from 6.4 to 7.8 mg/l, depending on pH (Könemann & Musch, 1981). This indicates that longer exposure does not lower the LC<sub>50</sub>. The LC<sub>50</sub> value reported for the marine species falls well within this range.

No true longer term studies were reported for freshwater fish species.

# 7.2.3. Marine invertebrates

Toxicity studies on marine invertebrates have not been found.

# 7.2.4. Freshwater invertebrates

### Crustaceans

Two short term studies are reported for *Daphnia*. The <u>lowest 96 h-LC<sub>50</sub> was 5.6 mg/l</u> for *D. pulex* (validity 2, nominal concentrations, renewal 2 times a week, Trabalka & Burch, 1978). The other study reports a 24 h-EC<sub>50</sub> of 15.8 mg/l for *D. magna* (validity 2, mobility, static closed systems, nominal concentrations, Devillers & Chambon, 1986). No studies were available on the longer term toxicity to crustaceans.

### Other freshwater invertebrates

No studies were reported for other invertebrates.

# 7.2.5. Algae

For two algae species toxicity studies were reported. The lowest <u>96 h-EC<sub>50</sub> was 29</u> <u>mg/l</u> for *Selenastrum capricornutum* (validity 2, static closed system, nominal concentrations, Shigeoka *et al.*, 1988a). The other 72 h-EC<sub>50</sub> was 40 mg/l (Huang & Gloyna, 1968).

For marine species no studies have been found.

# 7.2.6. PNEC for aquatic organisms

Toxicity data are available mainly for freshwater organisms. Therefore the  $PNEC_{water}$  will have to be derived on the basis of data for freshwater organisms.

In table 4 the lowest data for the major taxonomic groups are presented. There are  $EC/LC_{50}$  -values for the three trophic levels of the base-set: fish, *Daphnia* and algae, implying an assessment factor of 1000 to the lowest  $EC/LC_{50}$ . No prolonged or long term toxicity studies were found.

Table 4: Summary of ecotoxicity data selected for the PNEC derivation, with the appropriate assessment factors for 3-chlorophenol

| Data Set                                                                                    | Assigned Assessment<br>Factor | Lowest Toxicity Values                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| At least 1 short-term LC <sub>50</sub> from<br>each trophic level (fish, daphnia,<br>algae) | 1000                          | <ul> <li><i>L. melanotus</i>, 48h LC50 3<br/>mg/l (val. 1, Dietz <i>et al.</i>, 1978)</li> <li><i>D. pulex</i>, 96h LC<sub>50</sub> 5.6 mg/l<br/>(val. 2, Trabalka &amp; Burch,<br/>1978)</li> <li><i>S. capricornutum</i>, 96h EC<sub>50</sub> 29<br/>mg/l (val. 2, Shigeoka <i>et al.</i>,<br/>1988a)</li> </ul> |

Application of an assessment factor of 1000 to the short term tests would result in a  $PNEC_{water}$  of 0.003 mg/l.

# 7.3. <u>4-chlorophenol</u>

In total, 11 different data for fish, 17 data for aquatic invertebrates and 9 different data for algae have been evaluated. For each of the taxonomic groups considered respectively 4, 6 and 2 were considered valid, 4, 8 and 5 were judged valid with care and 3, 3 and 2 were not valid for risk assessment.

# 7.3.1. Marine fish

Two short term studies were reported for 2 species. The <u>lowest 96 h-LC<sub>50</sub> is 5 mg/l for</u> <u>*P. flesus*</u> (validity 2, nominal concentrations, closed semi-static test systems, Smith *et al.*, 1994). The other 96 h-LC<sub>50</sub> was 5.4 mg/l (Heitmuller *et al.*, 1981).

There are no long-term toxicity studies available for marine fish

# 7.3.2. Freshwater fish

Six valid short-term toxicity studies were reported for the same number of species. <u>The</u> lowest 96 h-LC<sub>50</sub> was 1.9 mg/l for *Oncorhynchus mykiss* (Hodson *et al.*, 1984). The validity of this study was classified as validity 1 (flow-through system, measured concentrations). The next higher valid <u>LC<sub>50</sub> value was 3 mg/l for *L. melanotus* in 48h (validity 2, static system, measured concentrations, Dietz *et al.*, 1978). All other studies report LC<sub>50</sub> values ranging between 3.8 and 8.49 mg/l (Buccafusco *et al.*, 1981; Kuiper, 1982; Saarikoski & Viluksela, 1982; Mayes *et al.*, 1983).</u>

The results of the tests with marine organisms match this range rather well. There were no chronic studies available for freshwater fish.

# 7.3.3. Marine invertebrates

# Crustaceans

One valid study on marine pelagic species was found. The 24h-LC<sub>50</sub> was 21 mg/l in *Tisbe battagliai* (validity 2, nominal concentrations, aerated seawater, Smith *et al.* 1994).

Two other valid studies on marine benthic species were found. The lowest 96h-  $LC_{50}$  was 4.1 mg/l for *Chaetogammarus marinus* (validity 1, measured concentrations, Kuiper, 1982). A lethal threshold (LCx) was 4.6 mg/l in *C. septemspinosa\_*(validity 1, measured concentrations, semi-static system, McLeese *et al.* 1979).

Chronic toxicity studies on marine invertebrates have not been found.

# 7.3.4. Freshwater invertebrates

# Crustaceans

Eight valid studies report on the short-term toxicity for *Daphnia*. The <u>lowest 48 h-EC<sub>50</sub></u> was 2.5 mg/l (validity 2, static closed system, nominal concentrations, Kühn *et al.*, 1989a). All other EC<sub>50</sub> values range between 3.5 and 8.9 mg/l (Kopperman *et al.*, 1974; Trabalka & Burch, 1978; LeBlanc, 1980; Kuiper, 1982; Devillers & Chambon, 1986; Steinberg *et al.*, 1992).

One more study on the toxicity to *D. magna* reports  $EC_{50}$  value in the same range (USEPA, 1978). However, since this study could not be checked, it was classified with validity 4.

The short term toxicity data for marine organisms fall in the same range.

Two studies report on the long-term toxicity for *D. magna*. The lowest 3 week-NOEC on the reproduction and survival of *D. magna* was 0.63 mg/l (validity 1, semi-static closed system, measured concentrations, Kühn *et al.*, 1989b), whereas, on a 14 days exposure, the NOEC was 1 mg/l (Kuiper, 1982).

The freshwater crustaceans sensitivity to 4-chlorophenol is in the same range as for marine crustaceans.

# *Other freshwater invertebrates*

McLeese *et al.* (1979) have found a 96h LCx (lethal threshold) of 37 mg/l in the clam : *Mya arenaria* (validity 1).

Another publication could not be checked and was attributed validity 4 : Oksama and Kristoffersson (1979) have found a 96 hours  $EC_{50}$  of 40 mg/l in *Mesidotea entomon* (aquatic arthropod), and an  $EC_5$  96h of 27.5 mg/l, which confirms the above LOEC. Freshwater bivalves and arthropods seem to be less sensitive than crustaceans.

# 7.3.5. Marine algae

Two studies report  $EC_{50}$  values for marine algae ranging from 3.27 to 9.6 mg/l. The lowest one could not be checked (USEPA, 1978, cited in Krijgsheld and van der Gen,1986), (validity 4). However, the 96h  $EC_{50}$  in *Phaeodactylum tricornutum* of 9.6 mg/l was given a validity 1 (Kuiper, 1982). The values are in line with the results of tests with freshwater algae. The study in *P. tricornutum* gave a relatively low NOEC of 0.32 mg/l (validity 1, Kuiper, 1982).

# 7.3.6. Freshwater algae

Five valid studies report toxicity to freshwater algae. The lowest  $EC_{50}$  value of 4.79 mg/l was reported for a study on *S. capricornutum* which could not be checked (val. 4, static closed system, nominal concentrations, US-EPA, 1978). The next lowest 72h-EC<sub>50</sub> was 8.3 mg/l for *S. subspicatus* (validity 2, nominal concentrations, static closed system, Kühn & Pattard, 1990). The same study reports a 72h-EC<sub>10</sub> of 1.9 mg/l for *S. subspicatus* (validity 2, nominal concentrations, static closed system, Kühn & Pattard, 1990). The same study reports a 72h-EC<sub>10</sub> of 1.9 mg/l for *S. subspicatus* (validity 2, nominal concentrations, cell multiplication, static closed system, Kühn & Pattard, 1990). This value could be used as a NOEC. The EC<sub>50</sub> values ranged up to 50 mg/l (Huang & Gloyna, 1968; Shigeoka *et al.*, 1988a).

# 7.3.7. PNEC for aquatic organisms

Toxicity data are available for freshwater as well as marine organisms. The results of the marine and freshwater studies are always in the same range and therefore  $PNEC_{water}$  was derived on the basis of data for both freshwater and marine organisms. Table 5 presents the lowest data for the main taxonomic groups.  $EC/LC_{50}$  -values are available for the three trophic levels of the base-set, fish, *Daphnia*, and algae.

One prolonged study was found for *Daphnia* and one  $EC_{10}$  for algae, which can be considered as a NOEC according to TGD recommendations. Chronic data for fish are lacking, but *Daphnia* and fish show similar acute toxicity values,  $E(L)C_{50}$  fish 1.9 to 3 mg/l, and *Daphnia* 2.5 mg/l). It can be concluded that the two taxa have the same sensitivity and that the long term NOEC in *Daphnia* represents one of the most sensitive species. Therefore it is justified to apply an assessment factor of 50 to the lowest NOEC.

Application of an assessment factor of 1000 to the short term tests would result in a  $PNEC_{water}$  of 0.002 mg/l, whereas with an assessment factor of 50 to the lowest of the long term NOEC values the  $PNEC_{water}$  would be 0.013 mg/l.

| Data Set                                                                                                 | Assigned Assessment<br>Factor | Lowest Toxicity Values                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| At least 1 short-term LC <sub>50</sub> from<br>each trophic level (fish, daphnia<br>, algae)             | 1000                          | <ul> <li>O.s mykiss, 96h LC<sub>50</sub> 1.9 mg/l<br/>(val. 1, Hodson et al., 1984)</li> <li>D. magna, 48h LC<sub>50</sub> 2.5 mg/l<br/>(val. 2, Kühn et al., 1989a)</li> <li>S. subspicatus 72 h EC<sub>50</sub> 8.3<br/>mg/l (val. 2, Kühn .&amp; Pattard, 1990)</li> </ul> |
| Long-term NOEC from at least<br>2 species representing three<br>trophic levels (fish, daphnia,<br>algae) | 50                            | <ul> <li><i>D. magna</i>, 3w NOEC<br/>mortality, reproduction 0.63<br/>mg/l (val. 2, Kühn <i>et al.</i>, 1989b)</li> <li><i>P. tricornutum</i>, 96h NOEC</li> <li>0.32 mg/l (val 1, Kuiper, 1982)</li> </ul>                                                                  |

# Table 5: Summary of ecotoxicity data selected for the PNEC derivation, with the appropriate assessment factors for 4-chlorophenol

# 7.4. <u>Comparison of toxicity data for the chlorophenol isomers</u>

In table 6, the lowest validated  $E(L)C_{50}$  and NOEC are shown. The acute/chronic (A/C) ratios have been calculated for each species where a NOEC was available, dividing the mean of all validated available  $E(L)C_{50}$  values in this species by the NOEC in this species.

From comparison of the toxicity data for the different isomers, it can be concluded that all three isomers have comparable toxicity. The few toxicity data for marine organisms available indicate that the sensitivity is similar to freshwater organisms. Algae seem to be less sensitive than fish and invertebrates. However, they were found to be more sensitive to 4-chlorophenol, than to 2- and 3- chlorophenol.

| Isomer         | Lowest   | Organism               | Lowest          | Organism         | A/C   |
|----------------|----------|------------------------|-----------------|------------------|-------|
|                | E(L)C50  |                        | NOEC            |                  | ratio |
| 2-chlorophenol | 6.6 mg/l | L. macrochirus         | 4 mg/l          | P. promelas      | 1.65  |
|                | 2.6 mg/l | D. magna               | 0.5 mg/l        | D. magna         | 5.2   |
|                | 50 mg/l  | Freshwater algae       | 24 mg/l (EC     | Freshwater algae | 2.1   |
|                | (24)     |                        | 10) (4)         |                  |       |
| 3-chlorophenol | 3 mg/l   | <i>L. idus</i> (48 h)  | n.a.            |                  |       |
|                | 5.6 mg/l | <i>D. pulex</i> (96 h) |                 |                  |       |
|                | 29 mg/l  | Freshwater algae       |                 |                  |       |
|                | (7)      |                        |                 |                  |       |
| 4-chlorophenol | 1.9 mg/l | O. mykiss              | n.a.            |                  | -     |
|                | 2.5 mg/l | D. magna               | 0.63 mg/l       | D. magna         | 4     |
|                | 8.3 mg/l | Freshwater algae       | 1.9 mg/l (EC10) | Freshwater algae | 4.4   |
|                | 9.6      | Marine algae           | 0.32 mg/l (3)   | Marine algae     | 30    |
|                | (26)     |                        |                 | -                |       |

Table 6 : Lowest E(L)C50 and NOEC values for monochlorophenols and their acute: chronic ratios

(Numbers in brackets) : number of valid studies compared

# 7.4.1. Acute toxicity

The lowest  $EC_{50}$  values in fish and *Daphnia* for the three chlorophenol isomers lie within a factor 3.5 for all data in both species (due to fish values) and even 2.2 for *Daphnia*. They are based on data sets sufficiently abundant to be reliable. The most toxic isomer appears to be 4-chlorophenol with the overall  $E(L)C_{50}$  is for fish, *Daphnia* and algae, which is more often observed for para isomers. Nevertheless, the differences are small with all isomers having very similar toxicity levels.

# 7.4.2. Chronic toxicity

Chronic values are only available for 2- and 4-chlorophenol. However, as the acute values for fish and *Daphnia* are within a narrow range for all 3 monochlorophenols, it is relevant to consider all chronic data to select the lowest one. Of all 3 substances 0.5 mg/l is the lowest daphnia NOEC, with an acute/chronic ratio of 5.2. If this ratio was applied to the lowest  $E(L)C_{50}$  value in fish of 1.9 mg/l in *O. mykiss* this would give a NOEC value of 0.36 mg/l.The lowest NOEC value in algae for the most toxic 4-chlorophenol is 0.32 mg/l in *P. tricornutum* (marine algae), with a high acute/chronic ratio of 30 (EC<sub>50</sub> in *P. tricornutum* = 9.6 mg/l). In fact, this exceptionally high acute/chronic ratio leads to the lowest NOEC value for the 3 trophic levels in the least sensitive group at acute level. The ratio observed for the other algae species where EC<sub>50</sub> and EC<sub>10</sub> data were available were only 2.1 and 4.4.

# 7.4.3. PNEC<sub>water</sub> derivation

Taking into account the exceptional value for the marine algae and the calculation made for a possible NOEC in the most sensitive fish lead to the proposed worst-case lowest NOEC = 0.3 mg/l. Pooling of all chronic data of the 3 isomers authorises to derive a

PNEC with an assessment factor of 10, applied to the overall lowest NOEC. This results in a worst-case PNEC = 0.03 mg/l.

# 7.4.4. PNEC<sub>sediment</sub> derivation

The PNEC<sub>sed</sub> can be derived by a calculation using the PNEC<sub>water</sub> and the log K<sub>ow</sub> (TGD, 1996). The log K<sub>ow</sub> values of the chlorophenols are quite similar, with a range of 2.15 to 2.50 and a mean value of 2.3. It must be born in mind that these values refer to the molecular form. Monochlorophenols can dissociate at high pH, but under environmental pH conditions the molecular form is the most relevant one.

A common PNEC<sub>water</sub> of 0.03 mg/l was derived for all three compounds, and their log  $K_{ow}$  values are rather similar with a mean of 2.3. Therefore, it is considered appropriate to derive a PNEC<sub>sed</sub> value for the three monochlorophenols of:  $PNEC_{sed} = 0.258$ mg/kg (ww) or 258 µg/kg

This value has been determined by applying the formula based on the equilibrium partitioning according to the TGD (1996):

$$PNEC_{sed} = K_{sed-water} / RHO_{sed} * PNEC_{water} * 1000$$

With :

 $Log K_{oc} = 0.63 Log K_{ow} + 0.90$  $K_{sed-water} = Foc_{sed} * K_{oc}$  $Foc_{sed} = 0.05 \text{ kg/kg}$  $RHO_{sed} = 1300 \text{ kg/m}^3$ 

#### 7.5. **Bioaccumulation**

The log octanol-water partition coefficients (LogKow) found for these substances were 2.15 for 2-chlorophenol, 2.50 for 3-chlorophenol and 2.39 for 4-chlorophenol. Calculations from the log Kow lead to bioconcentration factors (BCFs) of 13, 26 and 21 for the three isomers, respectively. These values do not indicate a potential for bioaccumulation.

In addition to the low BCF based on the Log K<sub>ow</sub>, the fact that only sulfate and glucuronide conjugates of chlorophenols are detected in exposed fish shows that conjugation occurs which supports that bioaccumulation does not occur (Krijgsheld & van der Gen, 1986). The same authors have reported BCFs for 2- and 4-chlorophenol, but these were not reliable since they were determined after exposure periods of 12 to 42-hours, which is insufficient to reach equilibrium.

For tests of six weeks at 0.04 mg/l the Japanese Chemicals Inspection and Testing Institute reported BCF values of 14-24, 5-10 and 6-18 for 2-, 3- and 4-chlorophenol, respectively (CITI, 1992). For similar tests at 0.004 mg/l the respective values were 16-29, 7-16 and 11-52. These results clearly confirm the prediction from octanol/water partition coefficients that the monochlorophenols do not bioaccumulate.

# 7.6. <u>Persistence</u>

# 7.6.1. Abiotic degradation

Only data on photodegradation in water are available (Boule *et al.*, 1982). The first step of photochemical degradation of monochlorophenols in water is a C-Cl bond scission, which is not influenced by oxygen (the same products were obtained in aerated and degassed solutions). Chlorine is converted into hydrochloric acid. The position of the chlorine on the ring strongly influences the tranformation. In the molecular form 2-chlorophenol is converted into catechol. In the anionic form, however, it is reduced into a cyclopentadienic acid which dimerises according to a Diels-Alder reaction. The irradiation of 3-chlorophenol leads to resorcinol at any pH. This would appear to suggest a photohydrolysis mechanism. With 4-chlorophenol, the photochemical conversion is not so specific. Hydroquinone is formed (mainly in aerated solution) along with polyphenolic oligomers. A radical mechanism is probably involved.

# 7.6.2. Biodegradation

Most of the available studies demonstrate primary biodegradation, measured as decay of parent substance using specific analytical methods.

Activated sludge of secondary treatment plants treating combined domestic and industrial discharges achieved 97% biodegradation for a 10 mg/l 2-chlorophenol solution and 80 % for 10 mg/l of 4-chlorophenol after 6 hours. 100 % biodegradation was found for both chlorophenols at 1 mg/l. At 100 mg/l only 20 % for 2-chlorophenol and 16 % for 4-chlorophenol were found (Baird *et al.*, 1974). The EC<sub>50</sub> values of phenol biodegradaton inhibition by 2-chlorophenol and 4-chlorophenol in an activated sludge flow through system were 104 and 71 mg/l respectively (Beltrame *et al.*, 1984) Which supports the observed biodegradation results.

Micro-organisms collected from a depth of 0.5 m above a river sediment achieved 68 % primary biodegradation of a 40 mg/l solution of 2-chlorophenol after 40 days, but 17 % only for 4-chlorophenol (Baker & Mayfield, 1980). This result reflects both phenomena of toxicity at this concentration and adaptation of the natural inoculum collected, as mineralisation could at last be achieved. However, with a sediment sample collected in the same place, the biodegradation was 100 % after 10-15 days, and more than 70 % of 3-chlorophenol disappeared within 80 days.

Inoculation of a 50 mg/l solution with soil showed an even better result of 100 % primary biodegradation after 14 days for 2-chlorophenol and 3 days for 4-chlorophenol (Alexander & Aleem, 1961).

Isolates from a petroleum waste lagoon, which was likely to contain adapted organisms, degraded 95 % of a 300 mg/l 4-chlorophenol solution after 6 days and 95 % of a 150 mg/l 3-chlorophenol solution in 3 days (Tabak *et al.*, 1964).

A study with results of ultimate aerobic biodegradation was reported by Ingols *et al.* (1966). After adaptation, activated sludge showed a removal of 100 % of parent substance from a 100 mg/l solution after 4, 2 and 3 days for 2-, 3- and 4-chlorophenol, respectively. The aromatic ring degradation was 100 % after 3 days, as well as chloride ion evolution. Based on the available data, the monochlorophenols should be classified

as inherently biodegradable, but the results also show that the biodegradation potential is quite high.

Boyd & Shelton (1984) reported anaerobic biodegradability. A non adapted anaerobic sludge degraded a 50 mg/l 2-chlorophenol solution and a 45 mg/l 4-chlorophenol solution at 72 % after 21 days, and 60 % after 42 days respectively. An adapted anaerobic sludge however degraded the same solutions at 98 % after 4 days for 2-chlorophenol and after 3 days for 4-chlorophenol.

In the soils, the three isomers are rapidly degraded, as shown by a study by Baker & Mayfield (1980). 119 mg/kg soil of 2-chlorophenol were applied on a clayloam soil collected from the surface (15 cm) of an uncultivated grassland site in Waterloo County, Ontario, and chlorophenol decay was measured at a temperature range from 0 to 23 °C. The degradation observed was 91 % after 8 days at 0 °C, and 100 % after 1.5 days at 23 °C. The same experiments with 4-chlorophenol lead to the same degradation kinetics. This leads to the conclusion that monochlorophenols deposited on a soil will be rapidly degraded even at low temperatures (half-lives below one week at 0°C and in a one day order of magnitude at 23 °C).

All these results suggest that the monochlorophenols are inherently biodegradable. The 2-chlorophenol is more rapidly degraded by a non-adapted inoculum than the 4-chlorophenol, however, the 4-chlorophenol is more rapidly degraded by an adapted inoculum. 3-chlorophenol is less rapidly biodegraded than both other isomers (Alexander & Aleem, 1961).

The general conclusion is that parent compound would undergo rapid primary biodegradation in surface waters, sediments and soils, and subsequent mineralisation.

# 7.7. <u>Conclusion</u>

Although the compounds are toxic for aquatic organisms  $(1 \text{ mg/l} < E(L)C_{50} < 10 \text{ mg/l})$ , it can be concluded from the above information that monochlorophenols are not «persistent, toxic and liable to bioaccumulate substances» according to the current criteria (e.g. OSPARCOM, UNECE, TDG).

# 8. <u>EXPOSURE ASSESSMENT</u>

The number of reported monitoring data is not very high. Levels in surface waters (river and marine waters) are detailed in Appendix 6.

# 8.1. <u>2-chlorophenol</u>

Concentrations of 2-chlorophenol in various surface waters are given by Rippen (1998). The values reported cover the period 1974-1986 and vary from 0.050 to  $2.3 \mu g/l$ .

Recent data from several sites in The Netherlands (including some marine sites) (RWS, 1997) and data from UK rivers show that in most locations the concentrations are under the detection limit of 0.1  $\mu$ g/l and that 90% of the reported values are under 0.5

 $\mu$ g/l (EU COMMPS, 1998). The proposed worst-case PEC<sub>water</sub> value used for all 3 monochlorophenols is set at 0.5  $\mu$ g/l, which is also used for the final risk calculations. 0.1  $\mu$ g/l is used as the typical value.

The only measured values of 2-chlorophenol concentrations in sediment are obtained in The Netherlands in 1995 (RWS, 1997). All values are under the detection limit of 0.1 mg/kg. The proposed PEC<sub>sediment</sub> for 2chlorophenolvalue of 50  $\mu$ g/kg corresponds to half the detection limit.

# 8.2. <u>3-chlorophenol</u>

Concentrations of 3-chlorophenol in various surface waters in The Netherlands and Germany are given by Rippen (1998). The values reported cover the period 1976-1986 and mainly vary from 0.050 to 2  $\mu$ g/l.

More recent concentration values reported in the EU COMMPS database for freshwater and some estuarine/marine sites in The Netherlands in 1996-1997 are all under the detection limit of  $0.1 \,\mu$ g/l (EU COMMPS, 1998).

Similarly, the concentrations measured in freshwater and marine sediments in The Netherlands in 1995-1997 are all under the detection limit of 0.1 mg/kg (RWS, 1997; EU COMMPS, 1998). The proposed  $PEC_{sediment}$  value of 50 µg/kg for 3-chlorophenolcorresponds to half the detection limit.

# 8.3. <u>4-chlorophenol</u>

Concentrations of 4-chlorophenol in various surface waters in The Netherlands and Germany are given by Rippen (1998). The values reported cover the period1974-1986 and vary from 0.050 to 2  $\mu$ g/l.

More recent concentration values reported in the EU COMMPS database have been measured in UK rivers and in freshwater sites (including some marine sites) in The Netherlands over the period 1994-1997. Most of the values for 4-chlorophenol are under the detection limit of  $0.1 \mu g/l(EU COMMPS, 1998)$ .

In sediment, the only available values have been measured in The Netherlands (RWS, 1997; EU COMMPS, 1998). The mean value for the most recent data (1996-1997) is 68  $\mu$ g/kg and the 90-percentile is 125  $\mu$ g/kg (EU COMMPS, 1998). This value is proposed as PEC<sub>sediment</sub> and is used for all chlorophenols in the final risk calculations.

# 9. <u>RISK ASSESSMENT CONCLUSION</u>

The natural production of several chlorophenols has been well documented in scientific literature and for monochlorophenols there is evidence that at least 4-chlorophenol is naturally produced. However, in the quantification of the risks of monochlorophenols the natural production has not been included, which can be considered as a worst-case.

In the risk characterisation of chlorophenols, PNECs are compared with PEC. For the effect assessment, it is thought appropriate to consider all isomers similarly as no

significant differences in test results were found. A PNEC of 30  $\mu$ g/l was obtained for aquatic species and a PNEC of 258  $\mu$ g/kg wet weight was calculated for sediments.

For monitoring data also, the various isomers can be considered equivalent. The monitoring data recorded in surface waters (mainly in rivers) showed typical mean concentrations lower than the detection level. As a worst case a PEC value of 0.5  $\mu$ g/l corresponding to the 90 percentile of the concentration distribution, is used.

On the basis of these monitoring data, the PEC/PNEC ratios for the water compartment can be calculated, the results are summarised in Table 7.

| Type of water   | PEC level         | PEC/PNEC |
|-----------------|-------------------|----------|
| River waters    |                   |          |
| • worst case    | 0.5 µg/l          | 0.02     |
| • typical water | $< 0.1 \ \mu g/l$ | < 0.003  |

# Table 7: Calculation of PEC/PNEC ratios for chlorophenols in the water compartment

The calculated ratios for the water compartment indicate that the present levels of 2-, 3- and 4monochlorophenol do not represent a risk to aquatic organisms in the North Sea region. The calculated margins are 50 and more than 333 for the worst-case and typical monitoring data, respectively. Moreover, it must be emphasized that these data are based on concentrations measured in rivers and do not take into account any degradation or dilution of these concentrations before reaching the sea.

In addition, it is concluded that there is no risk of bioaccumulation for the monochlorophenols, based on both the intrinsic properties of the substances as well as on studies measuring BCFs.

Combining the monitoring data available for sediment showed levels ranging from 50  $\mu$ g/kg, representing half the detection limit, to 125  $\mu$ g/kg, representing the 90-percentile of data for 4-chlorophenol. When assessing the risks for the monochlorophenols it should be born in mind that the PNEC<sub>sediment</sub> does not take into account the potential for ionisation. At the same time it must be emphasised that the monitoring data include the natural production, which in particular has been established for 4-chlorophenol. This isomer shows the highest sediment concentrations which were used to derive the PEC for all isomers.

It can therefore be concluded that on the basis of these monitoring data and the calculated PNEC for sediment the risks can be evaluated adequately. The PEC/PNEC ratios for the sediment compartment are summarised in Table 8.

# Table 8: Calculation of the PEC/PNEC ratios for chlorophenols in the sediments

|                    | PEC level | PEC/PNEC |
|--------------------|-----------|----------|
| • worst case       | 125 µg/kg | 0.48     |
| • typical sediment | 50 µg/kg  | 0.19     |

The calculated ratios for the sediment compartment indicate that the current levels of the three monochlorophenols do not represent a risk to organisms living in the sediment compartment in the North Sea region.

# 10. <u>REFERENCES</u>

- Alexander, M. & Aleem M.I.H. (1961): Effect of chemical structure on microbial degradation; J. Agric. Food Chem., 9 (1) : 44-47.
- Baird, R. B., Kuo, C.L., Shapiro, J.S. &Yanko, W.A. (1974): The fate of phenolics in wastewater - Determination by direct injection GLC and Warburg respirometry; Arch. Environ. Contam. Toxicol., 2 (2): 165-178.
- Baker, M. D. & Mayfield C.I. (1980.): Water Air Soil Pollut., 13 (4) : 411-424.
- Beltrame, P., Beltrame P.L. & Carniti P. (1984.): Inhibiting action of chloro- and nitro-phenols on biodegradation of phenol: a structure-toxicity relationship; Chemosphere, 13 (1): 3-9.
- Benoit-Guyod J.L., Andre C., Clavel, K. (1984):Chlorophenols: Degradation and Toxicity; J. Fr. Hydrol. 15 (3), 249-266
- Boule, P., Guyon, C., Lemaire, J. (1982): Photochemistry and Environment IV. Pohotochemical behaviour of monochlorophenols in the mouse. Toxicol. Lett. 29: 39-42.
- Boyd, S.A. and Shelton D.R. (1984) : Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge; Appl. Environ. Microbiol., 47 (2) : 272-277.
- Brooke, L.T. *et al.* (eds) (1985-1988): Acute toxicities of organic chemicals to fathead minnows (*Pimephales promelas*), vol I, II, III and IV. Center for Lake Superior Environmental Studies, University of Winconsin-Superior.
- Buccafusco, R.J., Ells, S.J. and LeBlanc, G.A. (1981): Acute toxicity of priority pollutants to bluegill (*Lepomis macrochirus*); Bull. Environ. Contam. Toxicol., 26, 446-452.
- Carlson, R.M.(1975): Structure-Activity correlations in studies of toxicity; Internat. Joint. Comm. Symp., 57-72.
- CITI (1992): Biodegradation and bioaccumulation data of existing chemicals based on CSCL Japan; Japan Chemical Industry, Ecology-Toxicology and Information Center
- Devillers, J. & Chambon, P. (1986): Acute toxicity and QSAR of chlorophenols on *Daphnia magna*; Bull. Environ. Contam. Toxicol., 37, 599-605.

Dietz, F. & Traud, J. (1978): Odor and taste threshold concentrations of phenolic compounds GWF Wasser Abwasser 119, 318-332.

EU COMMPS Database, Fraunhofer Institute, Umweltchemie und Ökotoxicologie, Report 97/723/3040/DEB/EI prepared for the European Commission DGXI – Proposal for a list of priority substances in the context of the draft water framework directive COM(97)49FIN, 13 August 1998

- Euro Chlor (1995): The natural chemistry of chlorine in the environment. An overview by a panel of Independent Scientists, 1<sup>st</sup> Edition Feb ; 1995. Euro Chlor, Brussels
- Euro Chlor (2002): Personal communication from the COCEM group, task force, a.o. inventarising emission data from production sites
- Gribble, G. (1994) : The natural production of chlorinated compounds. Eur. Sci. and Techn. Vol. 28 ; 310A-319A
- Heitmuller, P.T., Hollister, T.A. and Parrish, P.R. (1981): Acute toxicity of 54 industrial chemicals to sheepshead minnows (*Cyprinodon variegatus*). Bull. Environ. Contam. Toxicol., 17, 596-604.
- Hodson, P.V., Dixon D.G., Kaiser, K.L.E. (1984): Measurement of Median Lethal Dose as a Rapid Indication of Contaminant Toxicity to Fish;Environ. Toxicol. Chem. 3(2):243-254
- Huang, J-C and Gloyna, E.F. (1968): Effect of organic compounds on photosynthetic oxygenation I. Chlorophyll destruction and suppression of photosynthetic oxygen production; Water Research 2, 347-366.
- Ingols, R.S., P.E. Gaffney P.E. & Stevenson P.C. (1966.): Biological activities of halophenols; J Water Pollut. Control, 38 (4) : 629 635.
- Knie, J., Halke A., Juhnke I. and Schiller W. (1983): Results of studies of chemical substances with four biotests; Deutsche Gewasser Kd. Mitt., 27, 77-79.
- Könemann, H. and Musch, A. (1981b): Quantitative structure-activity relationships in fish toxicity studies. Part 2. The influence of pH on the QSAR of chlorophenols; Toxicology 19, 223-228.
- Kopperman, H.L., Carlson, R.M. and Caple, R. (1974): Aqueous chlorination and ozonation studies I. Structure-toxicity correlations of phenolic compounds to *Daphnia magna*; Chem.-Biol. Interactions 9, 245-251.
- Krijgsheld, K.R. and van der Gen, A. (1986): Assessment of the impact of the emissions of certain organochlorine compounds on the aquatic environment. Part 1. Monochlorophenols and 2,4-dichlorophenol; Chemosphere 15, 825-860.
- Kühn, R., Pattard, M., Pernak, K. and Winter, A. (1989): Results of the harmful effects of selected water pollutants *to Daphnia magna* in the 21 day reproduction test; Water Research 23, 501-510.
- Kühn, R. andPattard, M. (1990): Results of the harmful effects of water pollutants to green algae (*Scenedesmus subspicatus*) in the cell multiplication test; Water Research 24, 31-38.
- Kuiper, J. (1982): The use of model ecosystems for the validation of screening tests for biodegradation and acute toxicity; TNO-report no. CL 82/01.
- LeBlanc, G.A. (1980): Acute toxicity of priority pollutants to water flea (*Daphnia magna*); Bull. Environ Contam. Toxicol., 24, 684-691.
- LeBlanc, G.A. (1984b): Comparative structure-activity relationships between acute and chronic effects to aquatic organisms; In K.L.E. Kaiser (ed.), 1984.
- Mackay, D., Patterson, S. (1990): Fugacity models Practical applications of quantitative activity relations in environmental chemistry and toxicology; Karcher, W,
- Mayes, M.A., Alexander, H.C. and Dill, D.C.(1983): A study to assess the influence of the age on the response of fathead minnows in static acute toxicity tests; Bull. Environm. Contam. Toxicol., 31, 139-147.
- McLeese, D.W., Zitko V. and Peterson, M.R. (1979): Structure-lethality-relationships for phenols, anilines and other aromatic compounds in shrimp and clams; Chemosphere 2, 53-57.
- Oksama, M. and Kristoffersson, R. (1979): Ann. Zool. Fennici, 16, 209-216.

- Pedersen, F., Tyle, H., Niemelä, J.R., Guttmann, B., Lander, L., Wedebrand, A. (1994): Environmental Hazard Classification – Data Collection and interpretation guide; TemaNord 1994:589
- Phipps, G.L., G.W. Holcombe, G.W. and Fiandt, J.T. (1981): Acute Toxicity of Phenol and Substituted Phenols to the Fathead Minnows; Bull. Environm. Contam. Toxicol. 26, 585-593.
- Pickering, Q.H. and Henderson, C. (1966): Acute toxicity of some important petrochemicals to fish; J. Water Pollut. Control. Fed., 38, 1419.
- Randall, T.L. and Knopp, P.V. (1980): Detoxification of specific organic substances by wet oxidation. J. Water Pollut. Control Fed., 52(8), 2117-2130.
- Rippen, G. (1998): Handbuch Umweltchemikalien: Ecomed, Germany.
- Rijkswaterstaat (1997): Jaarboek 1995 Monitoring Rijkswateren, Rijkswaterstaat; Den Haag, The Netherlands, ISSN 0928-4214
- Saarikoski, J.and Viluksela, M. (1981): Influence of pH on the Toxicity of Substituted Phenols to Fish; Arch. Environ. Contam. Toxicol. 10 (6), 747-753
- Saarikoski, J. and Viluksela, M. (1982): Relationship between physicochemical properties of phenols and their toxicity and their accumulation in fish; Ecotoxicol. Environ. Saf., 6, 501-512.
- Shigeoka, T., Sato, Y., Takeda, Y., Yoshida, K. and Yamauchi, F. (1988a): Acute toxicity of chlorophenols to green algae, *Selenastrum capricornutum* and *Chlorella vulgaris*, and quantitative structure-activity relationships; Environ. Toxicol. Chem., 7, 847-854.
- Shigeoka, T., Sato, Y. and Yamauchi, F. (1988b): Toxicity and QSAR of chlorophenols on Daphnia; Eisei Kagaku 34, 169-175.
- Shumway, D.L. and Palensky, J.R. (1973): Impairment of the flavour of fish by water pollutants; U.S. EPA, Report no.: EPA-R3-73-010, U.S. Govern. Print Off Washington D.C.
- Sletten, O. (1972): A respirometric screening test for toxic substances ; Eng. Bull. Purdue Univ. Eng. Ext. Ser. 141, 24-32
- Smith, S., Furay, V.J., Layiwola, P.J. and Mendes-Filho, J.A. (1994): Evaluation of the toxicity and quantitative structure-activity relationships (QSAR) of chlorophenols to the copepodid stage of a marine copepod *Tisbe battagliai* and two species of benthic flatfish, the flounder (*Plastichthys flesus*) and the sole (*Solea solea*); Chemosphere 28(4), 825-836
- Steinberg, C.E.W., *et al.* (1992): Changes of Acute Toxicity of Organic Chemicals *to Daphnia magna* in the Presence of Dissolved Humic Material (DHM); Acta Hydrochim. Hydrobiol., 20(6), 326-332.
- Tabak, H.H., Chambers, C.W., Kabler, P.W. (1964): Microbial metabolism; J. Bacteriol., 87 (4): 910-919.
- TGD (1996) Technical Guidance Documents in support of the Commission Directive 93/67/EEC on Risk Assessment for new notified substances and the Commission Regulation (EC) 94/1488/EEC on risk assessment for existing substances (Parts I, II, III and IV) EC Catalogue numbers CR-48-96-001-EN-C, CR-48-96-002-EN-C, CR-48-96-003-EN-C, CR-48-96-004-EN-C
- Trabalka, J.R., Burch, M.B. (1978): Investigation of the Effects of Halogenated Organic Compounds Produced in Cooling Systems and Process Effluents on Aquatic Organisms; R.L.Jolley, H.Gorchev, and D.R.Hamilton, Jr. (Eds.), Water Chlorination: Environmental Impact and Health Effects: 163-173.

- US EPA (1978): In-depth studies on health and environmental impacts on selected water pollutants; U.S. Environ. Prot. Agency, Contract No. 68-01-4646, PB83-263665
- WRc (1998): Collation and evaluation of European monitoring data on mercury and chlorinated compounds; Report CO4517 for Euro Chlor

### Environmental quality criteria for assessment of ecotoxicity data

The principal quality criteria for acceptance of data are that the test procedure should be well described (with reference to an official guideline) and that the toxicant concentrations must be measured with an adequate analytical method.

Four cases can be distinguished and are summarized in the following table (according to criteria defined in IUCLID system).

| Case | Detailed<br>description<br>of the test                          | Accordance<br>with scientific<br>guidelines | Measured<br>concentratio<br>n | Conclusion:<br>reliability<br>level                                   |
|------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------|-----------------------------------------------------------------------|
| Ι    | +                                                               | +                                           | +                             | [1] :<br>valid without<br>restriction                                 |
| П    | ±                                                               | ±                                           | ±                             | [2] :<br>valid with<br>restrictions; to be<br>considered with<br>care |
| III  | insufficient or -                                               | -                                           | -                             | [ <b>3</b> ] :<br>invalid                                             |
| IV   | the information to give an adequate opinion<br>is not available |                                             |                               | [4] :<br>not assignable                                               |

Table : Quality criteria for acceptance of ecotoxicity data

The selected validated data LC50, EC50 or NOEC are divided by an assessment factor to determine a PNEC (Predicted No Effect Concentration) for the aquatic environment.

This assessment factor takes into account the confidence with which a PNEC can be derived from the available data: interspecies- and interlaboratory variabilities, extrapolation from acute to chronic effects.

Assessment factors will decrease as the available data are more relevant and refer to various trophic levels.

# Ultimate distribution in the environment according to Mackay level I model (details of calculation)

Fugacity Level I calculation

| Chemical:                                                                                                                                                                                                                                         | 2-chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Temperature (c)<br>Molecular weigh<br>Vapor pressure<br>Solubility (g/m<br>Solubility (mol<br>Henry's law con<br>Log octanol wat<br>Octanol water p<br>Organic C-water<br>Air-water parti<br>Soil-water part<br>Sediment-water<br>Amount of chemi | (Pa)<br>(Pa)<br>(Ma)<br>(ma)<br>(ma)<br>(ma)<br>(ma)<br>(mathematic coefficient<br>(mathematic coefficient<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic)<br>(mathematic) | 20<br>12<br>28<br>22<br>0<br>2<br>2<br>14<br>5<br>7<br>2<br>1<br>2<br>1<br>2<br>1<br>3<br>1 | 28.56<br>39<br>3500<br>21.69<br>.63<br>.15<br>41.25<br>7.91<br>25726214E-3<br>.74<br>.47 |
| Fugacity (Pa)<br>Total VZ produc                                                                                                                                                                                                                  | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                                                                                          | 72114031E-7<br>3866926.76                                                                |

Phase properties and compositions:

| Phase         | : Air   | W       | ater         | Soil         | Sediment     |
|---------------|---------|---------|--------------|--------------|--------------|
| Volume (m3)   | : .6000 | E+10    | .70000E+7    | .45000E+5    | .21000E+5    |
| Density(kgm3) | : .1205 | 6317E+2 | .10000E+4    | .15000E+4    | .15000E+4    |
| Frn org carb. | : .0000 | 0E+0    | .00000E+0    | .2000000E-1  | .4000000E-1  |
| Z mol/m3.Pa   | : .4102 | 9864E-3 | .15948659E+1 | .27709539E+1 | .55419078E+1 |
| VZ mol/Pa     | : .2461 | 7918E+7 | .11164061E+8 | .12469292E+6 | .11638006E+6 |
| Fugacity      | : .7211 | 4031E-7 | .72114031E-7 | .72114031E-7 | .72114031E-7 |
| Cone mol/m3   | : .2958 | 828E-10 | .11501221E-6 | .19982466E-6 | .39964932E-6 |
| Cone g/m3     | : .3803 | 8704E-8 | .14785970E-4 | .25689458E-4 | .51378916E-4 |
| Cone ug/g     | : .3155 | 0847E-6 | .14785970E-4 | .17126305E-4 | .34252611E-4 |
| Amount mol    | : .1775 | 2973E+0 | .80508551E+0 | .89921097E-2 | .83926357E-2 |
| Amount %      | :       | 17.75   | 80.51        | 0.90         | 0.84         |

Fugacity Level I calculation

| Chemical:                                                                                                                                                                                                                                               | 3-chlorophenol                                                                                                                                                                                                         |   |                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature (C<br>Molecular weig<br>Vapor pressure<br>Solubility (g/<br>Solubility (mo<br>Henry's law co<br>Log octanol wa<br>Octanol water<br>Organic C-wate<br>Air-water part<br>Soil-water part<br>Sediment-water<br>Amount of chem<br>Fugacity (Pa) | )<br>ht (g/mol)<br>(Pa)<br>M3)<br>1/M3)<br>nstant (PA.m3/mol)<br>ter part. coefficient<br>part. coefficient<br>r part. coefficient<br>ition coefficient<br>tition coefficient<br>partition coefficient<br>ical (moles) | t | 20<br>128.56<br>125<br>26000<br>202.24<br>0.62<br>2.50<br>316.23<br>129.65<br>.25359612E-3<br>3.89<br>7.78<br>1<br>.69760594E-7<br>14334740.13 |
| 1                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                        |   |                                                                                                                                                |

Phase properties and compositions:

| Phase         | : Air      | Water             | Soil           | Sediment          |
|---------------|------------|-------------------|----------------|-------------------|
| Volume (m3)   | : .6000E+1 | LO .70000E+       | .45000E+5      | .21000E+5         |
| Density(kgm3) | : .1205631 | 17E+2 .10000E+    | 4 .15000E+4    | 1.15000E+4        |
| Frn org carb. | : .00000E- | +0 .00000E+       | .2000000       | )E-1 .4000000E-1  |
| Z mol/m3.Pa   | : .4102986 | 64E-3 .1617921    | 5E+1 .62930702 | .12586140E+2      |
| VZ mol/Pa     | : .2461791 | L8E+7 .1132545    | 1E+8 .28318816 | .26430895E+6      |
| Fugacity      | : .6976059 | 94E-7 .6976059    | 4E-7 .69760594 | lE-7 .69760594E-7 |
| Cone mol/m3   | : .286226  | 7E-10 .1128671    | 7E-6 .43900832 | 2E-6 .87801665E-6 |
| Cone g/m3     | : .3679732 | L4E-8 .1451020    | 3E-4 .56438910 | DE-4 .11287782E-3 |
| Cone ug/g     | : .3052118 | .1451020 <b>.</b> | 3E-4 .37625940 | )E-4 .75251880E-4 |
| Amount mol    | : .1717360 | 06E+0 .7900702    | 1E+0 .19755374 | lE-1 .18438349E-1 |
| Amount %      | :          | 17.17             | 79.01          | 1.98 1.84         |

Fugacity Level I calculation

| Chemical:                                                                                                                                                                                                                                                                | 4-chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature (C<br>Molecular weig<br>Vapor pressure<br>Solubility (g/<br>Solubility (mo<br>Henry's law co<br>Log octanol wa<br>Octanol water<br>Organic C-wate<br>Air-water part<br>Soil-water par<br>Sediment-water<br>Amount of chem<br>Fugacity (Pa)<br>Total VZ produ | <pre>c)<br/>pht (g/mol)<br/>e (Pa)<br/>m3)<br/>pl/M3)<br/>pnstant (PA.m3/mol)<br/>eter part. coefficient<br/>part. coefficient<br/>er part. coefficient<br/>cition coefficient<br/>tition coefficient<br/>e partition coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coefficient<br/>coef</pre> | : | 20<br>128.56<br>51<br>27100<br>210.80<br>0.24<br>2.39<br>245.47<br>100.64<br>.99267441E-4<br>3.02<br>6.04<br>1<br>.30787830E-7<br>32480366.34 |
| -                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                               |

Phase properties and compositions:

| Phase         | : Ai | r           | Water        | Soil         | Sediment     |
|---------------|------|-------------|--------------|--------------|--------------|
| Volume (m3)   | : .  | 6000E+10    | .70000E+7    | .45000E+5    | .21000E+5    |
| Density(kgm3) | : .  | 12056317E+2 | .10000E+4    | .15000E+4    | .15000E+4    |
| Frn org carb. | : .  | 00000E+0    | .00000E+0    | .2000000E-1  | .4000000E-1  |
| Z mol/m3.Pa   | : .  | 41029864E-3 | .41332650E+1 | .12479533E+2 | .24959067E+2 |
| VZ mol/Pa     | : .  | 24617918E+7 | .2893285SE+8 | .56157902E+6 | .52414042E+6 |
| Fugacity      | : .  | 30787830E-7 | .30787830E-7 | .30787830E-7 | .30787830E-7 |
| Cone mol/m3   | : .  | 1263220E-10 | .12725426E-6 | .38421776E-6 | .76843553E-6 |
| Cone g/m3     | : .  | 16239962E-8 | .16359807E-4 | .49395036E-4 | .98790072E-4 |
| Cone ug/g     | : .  | 13470084E-6 | .16359807E-4 | .32930024E-4 | .65860048E-4 |
| Amount mol    | : .  | 75793229E-1 | .89077982E+0 | .17289799E-1 | .16137146E-1 |
| Amount %      | :    | 7.58        | 89.08        | 8            | 1.61         |
|               |      |             |              |              |              |

| <b>APPENDIX</b> 3 | 3 |
|-------------------|---|
|-------------------|---|

| 1 FISH                   |                                   |                   |                                       |                         |          |                                                                                                                                                                  |                                 |
|--------------------------|-----------------------------------|-------------------|---------------------------------------|-------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Species                  | Duration<br>d (days)<br>h (hours) | Type of<br>study  | Criterion<br>(LC50/EC50<br>NOEC/LOEC) | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                                                                                             | References                      |
| LC50/EC50 STUDIES        | · · · ·                           |                   |                                       |                         | •        | ·                                                                                                                                                                |                                 |
| 1. FRESHWATER            |                                   |                   |                                       |                         |          |                                                                                                                                                                  |                                 |
| Pimephales promelas      | 8 d                               | A;F-T             | LC50                                  | 6.3                     | 1        | life stage: 30-35 d; pH 7.5; lake<br>water; hrdn 45 mg/l CaCO <sub>3</sub> ; temp<br>25°C                                                                        | Phipps <i>et al.</i> , 1981     |
| Pimephales promelas      | 96 h                              | A;F-T             | EC50<br>LC50                          | 9.22<br>9.41            | 1        | respiration, loss of equilibrium; life<br>stage: 28 day, weight 0.043 g; lake<br>water; pH 7.8; temp 25.4 °C; hrdn<br>42.6 mg/l CaCO <sub>3</sub> ; DO 7.0 mg/l; | Brooke et al. 1985              |
| Pimephales promelas      | 96 h                              | A;F-T             | LC50                                  | 11                      | 1        | life stage: 30-35 d;lake water; pH<br>7.5; temp 25 °C; hrdn 45 mg/l<br>CaCO <sub>3</sub>                                                                         | Phipps <i>et al.</i> , 1981     |
| Poecilia reticulata      | ≥ 7 d                             | N;SS<br>(1-d);C   | LC50                                  | 11.2                    | 1        | life stage: 2-3 month; Alabaster and<br>Abram water; pH 7.3; hrdn 25 mg/l<br>CaCO <sub>3</sub> ; temp 22 °C; DO >5 mg/l                                          | Könemann &<br>Musch, 1981       |
| Poecilia reticulata      | 96 h                              | A;SS(12h;<br>4/5) | LC50                                  | 14                      | 1        | weight: 40-60 mg; tap water; pH 7;<br>temp26°C; hrdn 80-100 mg/l<br>CaCO <sub>3</sub> ;                                                                          | Saarikoski &<br>Viluksela, 1982 |
| Pimephales promelas      | 96 h                              | A;F-T             | LC50                                  | 13.8                    | 1        | life stage: 34 day; temp 24.7 °C;<br>pH 7.47; DO 8.2 mg/l; hrdn 44.9<br>mg/l CaCO <sub>3</sub> ; lake water                                                      | Brooke et al. 1985              |
| Oncorhynchus mykiss      | 96 h                              |                   | LC50                                  | 2.6                     | 4        | fingerlings; standard fish bioassay (1960)                                                                                                                       | Sletten, 1972                   |
| Lepomis macrochirus      | 96 h                              | N;S;C             | LC50                                  | 6.6                     | 2        | weight: 0.32-1.3 g; pH 6.5-7.9,<br>well water; hrdn 32-48 mg/l<br>CaCO <sub>3</sub> ; temp 22 °C                                                                 | Buccafusco <i>et al.</i> , 1981 |
| Leuciscus idus melanotus | 48 h                              | A;S               | LC50                                  | 8.3                     | 2        | pH 7; hrdn 267 mg/l CaCO <sub>3</sub> ; temp 20 °C                                                                                                               | Dietz et al.,, 1978             |

**APPENDIX 3** 

Monohlorophenols 02/2002

| Species             | Duration<br>d (days)<br>h (hours) | Type of<br>study | Criterion<br>(LC50/EC50<br>NOEC/LOEC) | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                               | References                     |
|---------------------|-----------------------------------|------------------|---------------------------------------|-------------------------|----------|----------------------------------------------------------------------------------------------------|--------------------------------|
| Lepomis macrochirus | 96 h                              | N;S              | LC50                                  | 10                      | 2        | life stage: 1-2 g; soft water; pH<br>7.5; DO 7.8 mg/l; temp 25 °C;                                 | Pickering &<br>Henderson, 1966 |
| Lepomis macrochirus | 48 h                              | SS               | LC50                                  | 8.1                     | 4        | рН 7.6-8.4                                                                                         | Lammering, 1960                |
| Carassius auratus   | 96 h                              | N;S              | LC50                                  | 12.37                   | 2        | weight: 1-2 g; soft water; pH 7.5;<br>temp 25°C; DO 7.8 mg/l;                                      | Pickering &<br>Henderson, 1966 |
| Poecilia reticulata | 96 h                              | N;S              | LC50                                  | 20.17                   | 2        | weight: 0.1-0.2 g; pH 7.5; soft<br>water; DO 7.8 mg/l; temp 25 °C                                  | Pickering &<br>Henderson, 1966 |
| Pimephales promelas | 96 h                              | N;S              | LC50<br>LC50                          | 11.6 14.5               | 2        | life stage: 1-2 g; soft water; pH<br>7.5; DO 7.8 mg/l; temp 25 °C;<br>hard water, pH 8.2 duplicate | Pickering &<br>Henderson, 1966 |
| 2. Saltwater        |                                   |                  |                                       |                         |          |                                                                                                    |                                |
| Platichthys flesus  | 96 h                              | N;SS(2d);C       | LC50                                  | 6.29                    | 2        | weight: 56 g; temp 6 °C; pH 8; sal 5‰; pur 98-99+%                                                 | Smith <i>et al.</i> 1994       |
| Solea solea         | 96 h                              | N;SS(2d);C       | LC50                                  | 6.6                     | 2        | weight: 45 g; temp 6 °C; pH 8; sal 20%; pur 98-99+%                                                | Smith et al., 1994             |
| Platichthys flesus  | 96 h                              | N;SS(2d);C       | LC50                                  | 6.99                    | 2        | weight: 56 g; temp 6 °C; pH 8; sal 5‰; pur 98-99+%                                                 | Smith et al., 1994             |

| A | PI | PE | N | DI | X          | 3 |
|---|----|----|---|----|------------|---|
|   |    |    |   |    | <b>4 B</b> | • |

| Species             | Dur.  | Type of<br>study | Criterion<br>(LC50/EC50<br>NOEC/LOEC) | Concentration<br>(mg/l) | Validity | Comments and remarks                                                           | References     |
|---------------------|-------|------------------|---------------------------------------|-------------------------|----------|--------------------------------------------------------------------------------|----------------|
| LOEC/NOEC STUDIES   |       |                  |                                       |                         |          |                                                                                |                |
| 1. FRESHWATER       |       |                  |                                       |                         |          |                                                                                |                |
| Pimephales promelas | > 4 w | A;F-T            | NOEC                                  | 4                       | 1        | hatchability, survival, growth; life<br>stage: eggs 4-w post hatching<br>(els) | LeBlanc, 1984b |
| 2. Saltwater        |       |                  |                                       |                         |          |                                                                                |                |
| No data available   |       |                  |                                       |                         |          |                                                                                |                |

### **2 INVERTEBRATES**

| Species           | Duration<br>d (days)<br>h (hours) | Type of<br>study | Criterion<br>(LC50/EC50<br>NOEC/LOEC) | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                                | References                     |
|-------------------|-----------------------------------|------------------|---------------------------------------|-------------------------|----------|-----------------------------------------------------------------------------------------------------|--------------------------------|
| LC50/EC50 STUDIES |                                   | 4                |                                       | 1                       | 4        | •                                                                                                   |                                |
| 1. FRESHWATER     |                                   |                  |                                       |                         |          |                                                                                                     |                                |
| Daphnia magna     | 24 h                              | N;S;C            | LC50                                  | 6.3                     | 1        | life stage: 6-24 h; pH 8; artificial<br>water; hrdn 250 mg/l CaCO <sub>3</sub> ;temp<br>20 °C       | Kühn et al., 1989b             |
| Daphnia magna     | 48 h                              | N;S:C            | LC50                                  | 7.4                     | 1        | life stage $\leq$ 24 h; lake water; temp 18 °C                                                      | Kopperman <i>et al.</i> , 1974 |
| Daphnia magna     | 24 h                              | N;S;C            | EC50                                  | 17.95                   | 2        | life stage < 72 h; pH 7.0-8.2;<br>artificial water; hrdn 200 mg/l<br>CaCO <sub>3</sub> ; temp 20 °C | Devillers &<br>Chambon, 1986   |
| Daphnia magna     | 48 h                              | N;S              | LC50                                  | 2.6                     | 2        | well water; pH 7.4-9.4; hrdn<br>173mg/l CaCO <sub>3</sub>                                           | LeBlanc, 1980                  |
| Daphnia magna     | 48 h                              | N;S              | EC50                                  | 6.2                     | 2        | immobility; life stage: ≤ 24 h;<br>pond water, hrdn 154.5; 22 °C;<br>pH 7.7                         | Randall & Knopp,<br>1980       |

| ٨ | p | D  | F I |    | n | V | 2 |
|---|---|----|-----|----|---|---|---|
| А | ľ | P. | ΕI  | NJ | Л | А | 3 |

Monohlorophenols 02/2002

| Species                    | Duration<br>d (days) | Type of<br>study | Criterion<br>(LC50/EC50 | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                                     | References                        |
|----------------------------|----------------------|------------------|-------------------------|-------------------------|----------|----------------------------------------------------------------------------------------------------------|-----------------------------------|
|                            | h (hours)            |                  | NOEC/LOEC)              |                         |          |                                                                                                          |                                   |
| Daphnia pulex              | 96 h                 | N;SS(2*<br>/wk)  | LC50                    | 6.9                     | 2        | life stage: 12 h; temp 20°C                                                                              | Trabalka & Burch,<br>1978         |
| Daphnia magna              | 48 h                 |                  | LC50                    | 7.43                    | 4        |                                                                                                          | Carlson, 1975                     |
| Daphnia magna              | 24 h                 |                  | EC50                    | 23                      | 4        | рН 8                                                                                                     | Knie, 1983                        |
| 2. Saltwater               |                      |                  |                         |                         |          |                                                                                                          |                                   |
| No data available          |                      |                  |                         |                         |          |                                                                                                          |                                   |
| 3. Freshwater benthic org. |                      |                  |                         |                         |          |                                                                                                          |                                   |
| No data available          |                      |                  |                         |                         |          |                                                                                                          |                                   |
| 4. Marine benthic org.     |                      |                  |                         |                         |          |                                                                                                          |                                   |
| Crangon septemspinosa      | 96 h                 | A;SS<br>(2d)     | LT                      | 5.2                     | 1        | lethal threshold (=LCx); length 3.8<br>cm, weight 0.6 g; aerated<br>seawater; temp 10 °C; sal 30 ‰       | McLeese et al., 1979              |
| LOEC/NOEC STUDIES          |                      | -<br>-           |                         |                         | <u>.</u> | · · · · · · · · · · · · · · · · · · ·                                                                    |                                   |
| 1. FRESHWATER              |                      |                  |                         |                         |          |                                                                                                          |                                   |
| Daphnia magna              | 3 w                  | A;SS;C           | NOEC                    | 0.5                     | 1        | survival, reproduction; life stage:<br>1-d old; standard water; pH 8;<br>hrdn 250 mg/l CaCO <sub>3</sub> | Kühn et al., 1989b                |
| Daphnia magna              | 14 d                 |                  | NOEC                    | 0.1 (MATC)              | 3        | survival, reproduction                                                                                   | Shigeoka <i>et al.</i> ,<br>1988b |
| 2. Saltwater               |                      |                  |                         |                         |          |                                                                                                          |                                   |
| No data available          |                      |                  |                         |                         |          |                                                                                                          |                                   |

# **3. AQUATIC PLANTS**

| Species                         | Duration<br>d (days) | Type of<br>study | Criterion<br>(EC50/LC50 | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                                                                                  | Reference                         |  |  |
|---------------------------------|----------------------|------------------|-------------------------|-------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
|                                 | h (hours)            |                  | NOEC/LOEC)              |                         |          |                                                                                                                                                       |                                   |  |  |
| EC50/LC50 and LOEC/NOEC STUDIES |                      |                  |                         |                         |          |                                                                                                                                                       |                                   |  |  |
| 1. FRESHWATER                   |                      |                  |                         |                         |          |                                                                                                                                                       |                                   |  |  |
| ALGAE                           |                      |                  |                         |                         |          |                                                                                                                                                       |                                   |  |  |
| Scenedesmus subspicatus         | 48 h                 | N;S;C            | EC50<br>EC10            | 50<br>24                | 2        | cell multiplication; inoculum 10 <sup>5</sup><br>cells/ml; artificial medium; pH 8;<br>hrdn 55.6 mg/l CaCO <sub>3</sub> ;                             | Kühn & Pattard,<br>1990           |  |  |
| Selenastrum capricornutum       | 96 h                 | N;S;C            | EC50                    | 70                      | 1        | growth; inoculum: 5x10 <sup>4</sup> cells/ml;<br>artifial medium; pH 7.5; hrdn<br>11mg/l CaCO <sub>3</sub> ; temp 21 °C;<br>contin. illumin. 4000 Lux | Shigeoka <i>et al</i> .,<br>1988a |  |  |
| Chlorella vulgaris              | 96 h                 | N;S;C            | EC50                    | 170                     | 1        | growth; inoculum: 5x10 <sup>4</sup> cells/ml;<br>artifial medium; pH 7.5; hrdn<br>11mg/l CaCO <sub>3</sub> ; temp 21 °C;<br>contin. illumin. 4000 Lux | Shigeoka <i>et al</i> .,<br>1988a |  |  |
| Chlorella pyrenoidosa           | 72 h                 | N;S              | EC50                    | 100                     | 2        | chlorophyll production;<br>extrapolated from graph; temp<br>25°C; pH 7                                                                                | Huang & Gloyna,<br>1968           |  |  |
| 2. Saltwater                    |                      |                  |                         |                         |          |                                                                                                                                                       |                                   |  |  |
| No data available               |                      |                  |                         |                         |          |                                                                                                                                                       |                                   |  |  |



# 1 FISH

| Species                  | Duration<br>d (days) | Type of<br>study | Criterion<br>(LC50/EC50 | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                                                                      | Reference                    |
|--------------------------|----------------------|------------------|-------------------------|-------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                          | h (hours)            | · ·              | NOEC/LOEC)              |                         |          |                                                                                                                                           |                              |
| LC50/EC50 STUDIES        |                      |                  |                         |                         |          |                                                                                                                                           |                              |
| 1. FRESHWATER            |                      |                  |                         |                         |          |                                                                                                                                           |                              |
| Leuciscus idus melanotus | 48 h                 | A;S              | LC50                    | 3                       | 2        | pH 7; hrdn 267 mg/l CaCO <sub>3</sub> ;<br>temp 20 °C                                                                                     | Dietz et al., 1978           |
| Poecilia reticulata      | ≥ 7 d                | N;SS(1-<br>d);C  | LC50<br>LC50<br>LC50    | 6.4<br>6.4<br>7.8       | 1        | pH 6.1;<br>pH 7.3;<br>pH 7.8;<br>life stage: 2-3 month;<br>Alabaster water; hrdn 25 mg/l<br>CaCO <sub>3</sub> ; temp 22 °C; DO >5<br>mg/l | Könemann & Musch,<br>1981    |
| Poecilia reticulata      | 24 h                 | N                | LC50                    | 3.47                    | 4        | Aquire: No review of study                                                                                                                | Benoit-Guyod et al.,<br>1984 |
| Oncorhynchus mykiss      | 48 h                 |                  | LC50                    | 10                      | 4        |                                                                                                                                           | Shumway & Palensky, 1973     |
| 2. Saltwater             |                      |                  |                         |                         |          |                                                                                                                                           |                              |
| Platichthys flesus       | 96 h                 | N;SS(2<br>d);C   | LC50                    | 3.99                    | 2        | weight: 56 g; pH 8; temp 6<br>°C; sal 5 ‰; pur 98-99+%                                                                                    | Smith et al., 1994           |
| LOEC/NOEC STUDIES        |                      |                  |                         |                         |          |                                                                                                                                           |                              |
| 1. FRESHWATER            |                      |                  |                         |                         |          |                                                                                                                                           |                              |
| No data available        |                      |                  |                         |                         |          |                                                                                                                                           |                              |
| 2. Saltwater             |                      |                  |                         |                         |          |                                                                                                                                           |                              |
| No data available        |                      |                  |                         |                         |          |                                                                                                                                           |                              |



### 2 INVERTEBRATES

| Species           | Duration<br>d (days)<br>h (hours) | Type of<br>study | Criterion<br>(LC50/EC50<br>NOEC/LOEC) | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                                                | Reference                    |
|-------------------|-----------------------------------|------------------|---------------------------------------|-------------------------|----------|---------------------------------------------------------------------------------------------------------------------|------------------------------|
| LC50/EC50 STUDIES | <u></u>                           | •<br>•           |                                       |                         |          |                                                                                                                     |                              |
| 1. FRESHWATER     |                                   |                  |                                       |                         |          |                                                                                                                     |                              |
| Daphnia pulex     | 96 h                              | N;SS(2*/<br>wk)  | LC50                                  | 5.6                     | 2        | life stage: <24 h; temp 20°C                                                                                        | Trabalka & Burch, 1978       |
| Daphnia magna     | 24 h                              | N;S;C            | EC50                                  | 15.78                   | 2        | immobility; life stage < 72 h;<br>pH 7.0-8.2; artificial water;<br>hrdn 200 mg/l CaCO <sub>3</sub> ; temp<br>20 °C; | Devillers & Chambon,<br>1986 |

# **3 AQUATIC PLANTS**

| Species                   | <b>Duration</b>       | Type of | Criterion                | Concentration | Validity | Comments and remarks                                                                                                                                             | Reference              |  |
|---------------------------|-----------------------|---------|--------------------------|---------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
|                           | d (days)<br>h (hours) | study   | (LC50/EC50<br>NOEC/LOEC) | (mg/l)        |          |                                                                                                                                                                  |                        |  |
| EC50/LC50 STUDIES         |                       |         |                          |               |          |                                                                                                                                                                  |                        |  |
| 1. FRESHWATER             |                       |         |                          |               |          |                                                                                                                                                                  |                        |  |
| ALGAE                     |                       |         |                          |               |          |                                                                                                                                                                  |                        |  |
| Selenastrum capricornutum | 96 h                  | N;S;C   | EC50                     | 29            | 2        | growth; inoculum: 5x10 <sup>4</sup><br>cells/ml; artificial medium;<br>pH 7.5; hrdn 11 mg/l CaCO <sub>3</sub> ;<br>temp 21 °C; life contin.<br>illumin. 4000 Lux | Shigeoka et al., 1988a |  |
| Chlorella pyrenoidosa     | 72 h                  | N;S     | EC50                     | 40            | 2        | chlorophyll A production;<br>extrapolated from graph;<br>temp 25 °C; pH 7                                                                                        | Huang & Gloyna, 1968   |  |
| 2. Saltwater              |                       |         |                          |               |          |                                                                                                                                                                  |                        |  |
| No data available         |                       |         |                          |               |          |                                                                                                                                                                  |                        |  |

# APPENDIX 5

Chlorophenols 02/2002

# 1 FISH

| Species                  | Duration<br>d (days)<br>h (hours) | Type of<br>study         | Criterion<br>(EC50/LC50<br>NOEC/LOEC) | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                                                   | Reference                       |
|--------------------------|-----------------------------------|--------------------------|---------------------------------------|-------------------------|----------|------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| LC50/EC50 STUDIES        |                                   |                          |                                       |                         |          |                                                                                                                        |                                 |
| 1. FRESHWATER            |                                   |                          |                                       |                         |          |                                                                                                                        |                                 |
| Leuciscus idus melanotus | 48 h                              | S;A                      | LC50                                  | 3                       | 2        | pH 7; hrdn 267 mg/l CaCO <sub>3</sub> ; temp 20 ° C                                                                    | Dietz et al., 1978              |
| Pimephales promelas      | 96 h                              | N;S;C                    | LC50                                  | 3.8-5                   | 1        | LC50: juv. 3.8, fry 4, subadult<br>5mg/l<br>lake water; pH 7.2-8.5; temp<br>22°C; hrdn 96-125 mg/l CaCO <sub>3</sub> ; |                                 |
| Poecilia reticulata      | 96 h                              | A;SS(12h<br>;4/5)        | LC50                                  | 8.49                    | 1        | weight: 40-60 mg; tap water; pH<br>7; hrdn 80-100 mg/l CaCO <sub>3</sub> ; temp<br>26 °C;                              | Saarikoski &<br>Viluksela, 1982 |
| Lepomis macrochirus      | 96 h                              | N;S                      | LC50                                  | 3.8                     | 2        | weight: 0.32-1.3 g; well water; pH<br>6.5-7.9, temp 22 °C; hrdn<br>32-48mg/l CaCO <sub>3</sub> ;                       | Buccafusco et al.,<br>1981      |
| Oncorhynchus mykiss      | 48 h                              |                          | ETC                                   | 0.045                   | 4        |                                                                                                                        | Shumway &<br>Palensky, 1973     |
| Oncorhynchus mykiss      | 96 h                              | A;F-T;<br>not<br>aerated | LC50                                  | 1.91                    | 1        | length: 4.6-6.4 cm; weight<br>1.2-3.8g; pH 7.6-8.2<br>measured concentrations                                          | Hodson et al. 1984              |
| Pimephales promelas      | 96 h                              |                          | LC50                                  | 3.8                     | 4        |                                                                                                                        | Lindstrom, 1980                 |
| Brachydanio rerio        | 96 h                              |                          | LC50                                  | 5.6                     | 1        |                                                                                                                        | Kuiper, 1982                    |
| Poecilia reticulata      | 96 h                              | N; SS                    | LC50                                  | 6.3                     | 4        | pH 5; Hrdn 80-100 mg/l CaCO <sub>3</sub>                                                                               | Saarikoski &<br>Viluksela, 1981 |
| 2. Saltwater             |                                   |                          |                                       |                         |          |                                                                                                                        |                                 |
| Platichthys flesus       | 96 h                              | N;SS;C                   | LC50                                  | 5                       | 2        | weight: 56 g; 6 °C; pH 8; sal 5‰;<br>pur 98-99+%, nominal conc.                                                        | Smith et al., 1994              |
| Cyprinodon variegatus    | 96 h                              | N;S                      | LC50                                  | 5.4                     | 2        | length: 8-15 mm; natural sea                                                                                           | Heitmuller et al.,              |

### **APPENDIX 5**

Chlorophenols 02/2002

| Species           | Duration<br>d (days)<br>h (hours) | Type of<br>study | Criterion<br>(EC50/LC50<br>NOEC/LOEC) | Concentration<br>(mg/l) | Validity | Comments and remarks              | Reference |
|-------------------|-----------------------------------|------------------|---------------------------------------|-------------------------|----------|-----------------------------------|-----------|
|                   |                                   |                  |                                       |                         |          | water; sal 10-31 ‰; temp 25-31°C; | 1981      |
| LOEC/NOEC STUDIES |                                   |                  |                                       |                         |          |                                   |           |
| 1. FRESHWATER     |                                   |                  |                                       |                         |          |                                   |           |
| No data available |                                   |                  |                                       |                         |          |                                   |           |
| 2. Saltwater      |                                   |                  |                                       |                         |          |                                   |           |
| No data available |                                   |                  |                                       |                         |          |                                   |           |

### **2 INVERTEBRATES**

| Species           | Duration<br>d (days)<br>h (hours) | Type of<br>study | Criterion<br>(EC50/LC50<br>NOEC/LOEC) | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                                             | Reference                    |
|-------------------|-----------------------------------|------------------|---------------------------------------|-------------------------|----------|------------------------------------------------------------------------------------------------------------------|------------------------------|
| LC50/EC50 STUDIES | •                                 |                  |                                       |                         |          | -                                                                                                                |                              |
| 1. FRESHWATER     |                                   |                  |                                       |                         |          |                                                                                                                  |                              |
| Daphnia magna     | 48 h                              | N;S;C            | LC50                                  | 2.5                     | 2        | life stage: 6-24 h; artificial water;<br>pH 8; hrdn 250 mg/l CaCO <sub>3</sub> ;<br>20°C; nominal concentrations | Kühn et al., 1989a           |
| Daphnia pulex     | 96 h                              | N;SS(2*/<br>wk)  | LC50                                  | 3.5                     | 2        | life stage: 12 h; temp 20°C                                                                                      | Trabalka & Burch<br>1978     |
| Daphnia magna     | 48 h                              | N;S              | LC50                                  | 4.1                     | 2        | well water; pH 7.4-9.4; hrdn<br>173mg/l CaCO <sub>3</sub>                                                        | LeBlanc, 1980                |
| Daphnia magna     | 48 h                              | N;S:C            | LC50                                  | 4.82                    | 2        | life stage $\leq$ 24 h; lake water; temp 18°C;                                                                   | Kopperman et al.,<br>1974    |
| Daphnia magna     | 48 h                              | N;S              | EC50                                  | 6.8                     | 2        | motility; life stage: < 24 h,<br>neonate; temp 20 °C; pur > 98%                                                  | Steinberg et al.,<br>1992    |
| Daphnia magna     | 24 h                              | N;S;C            | EC50                                  | 8.07                    | 2        | life stage < 72 h; pH 7.0-8.2;<br>artificial medium; hrdn 200 mg/l<br>CaCO <sub>3</sub> ; temp 20 °C             | Devillers &<br>Chambon, 1986 |

### **APPENDIX 5**

Chlorophenols 02/2002

| Species                    | Duration<br>d (days)<br>h (hours) | Type of<br>study | Criterion<br>(EC50/LC50<br>NOEC/LOEC) | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                                                | Reference                             |
|----------------------------|-----------------------------------|------------------|---------------------------------------|-------------------------|----------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Daphnia magna              | 48 h                              | N;S              | EC50                                  | 8.78                    | 2        | motility; life stage: < 24 h,<br>neonate; temp 20 °C; pur > 98%                                                     | Steinberg et al.,<br>1992             |
| Daphnia magna              | 48 h                              | N;S              | EC50                                  | 4.42 (4.06?)            | 4        |                                                                                                                     | US EPA, 1978                          |
| Daphnia magna              | 48 h                              |                  | LC50                                  | 8.9                     | 1        |                                                                                                                     | Kuiper, 1982                          |
| 2. Saltwater               |                                   |                  |                                       |                         |          |                                                                                                                     |                                       |
| Tisbe battagliai           | 24 h                              | N;S              | LC50                                  | 21                      | 2        | life stage: 6 day, copepodid stage;<br>sea water; pH 8; temp 20 °C; sal<br>30 ‰; pur 98-99+%                        | Smith et al., 1994                    |
| Mysidopsis bahia           | ??                                |                  | LC50                                  | 29.7                    | 4        |                                                                                                                     | US EPA, 1978                          |
| 3. Freshwater benthic org. |                                   |                  |                                       |                         |          |                                                                                                                     |                                       |
| Mya arenaria               | 96 h                              | A, SS            | LT                                    | 37                      | 1        | lethal threshold(= $LCx$ )                                                                                          | McLeese et al.,<br>1979               |
| Mesidotea entomon          | 96 h                              |                  | EC50<br>EC5                           | 40<br>27.5              | 4        |                                                                                                                     | Oksama and<br>Kristoffersson,<br>1979 |
| 4. Marine benthic org.     |                                   |                  |                                       |                         |          |                                                                                                                     |                                       |
| Crangon septemspinosa      | 96 h                              | A;SS(2-d)        | LT                                    | 4.6                     | 1        | lethal threshold(= LCx); length:<br>3.8 cm, weight 0.6; aerated<br>seawater; temp 10 °C; sal 30 ‰;                  | McLeese et al.,<br>1979               |
| Chaetogammarus marinus     | 96 h                              |                  | LC50                                  | 4.1                     | 1        |                                                                                                                     | Kuiper, 1982                          |
| LOEC/NOEC STUDIES          |                                   |                  |                                       |                         |          |                                                                                                                     |                                       |
| 1. FRESHWATER              |                                   |                  |                                       |                         |          |                                                                                                                     |                                       |
| Daphnia magna              | 3 w                               | A;SS(2<br>d);C   | NOEC                                  | 0.63                    | 1        | survival, reproduction; life stage:<br>P 1-d old ® F (lc); pH 8; standard<br>water; hrdn 250 mg/l CaCO <sub>3</sub> | Kühn et al., 1989b                    |
| Daphnia magna              | 14 d                              |                  | NOEC                                  | 1                       | 1        |                                                                                                                     | Kuiper, 1982                          |
| 2. Saltwater               |                                   |                  |                                       |                         |          |                                                                                                                     |                                       |
| No data available          |                                   |                  |                                       |                         |          |                                                                                                                     |                                       |

### **APPENDIX 5**

Chlorophenols 02/2002

# **3 AQUATIC PLANTS**

| Species                   | Duration<br>d (days)<br>h (hours) | Type of<br>study | Criterion<br>(EC50/LC50<br>NOEC/LOEC) | Concentration<br>(mg/l) | Validity | Comments and remarks                                                                                                                                    | Reference                 |
|---------------------------|-----------------------------------|------------------|---------------------------------------|-------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| LOEC/NOEC STUDIES         |                                   |                  |                                       |                         |          | ÷                                                                                                                                                       |                           |
| 1. FRESHWATER             |                                   |                  |                                       |                         |          |                                                                                                                                                         |                           |
| ALGAE                     |                                   |                  |                                       |                         |          |                                                                                                                                                         |                           |
| Scenedesmus subspicatus   | 72 h                              | N;S;C            | EC10<br>EC50                          | 1.9<br>8.3              | 2        | cell multiplication; inoculum 10 <sup>4</sup><br>cells/ml; artificial medium; pH 8;<br>hrdn 55.6 mg/l CaCO <sub>3</sub> ;                               | Kühn & Pattard,<br>1990   |
| Chlorella vulgaris        | 96 h                              | N;S;C            | EC50                                  | 29                      | 2        | growth; inoculum: 5x10 <sup>4</sup> cells/ml;<br>artificial medium; pH 7.5; hrdn<br>11mg/l CaCO <sub>3</sub> ; temp 21 °C;<br>contin. illumin. 4000 Lux | Shigeoka et al.,<br>1988a |
| Selenastrum capricornutum | 96 h                              | N;S;C            | EC50                                  | 38                      | 2        | growth; inoculum: 5x10 <sup>4</sup> cells/ml;<br>artificial medium; pH 7.5; hrdn<br>11mg/l CaCO <sub>3</sub> ; temp 21°C; contin.<br>illumin. 4000 Lux  | Shigeoka et al.,<br>1988a |
| Chlorella pyrenoidosa     | 72 h                              | N;S              | EC50                                  | 50                      | 2        | chlorophyll A production;<br>extrapolated from graph; temp<br>25°C; pH 7                                                                                | Huang & Gloyna,<br>1968   |
| Selenastrum capricornutum | 96 h                              | N;S;C            | EC50                                  | 4.79                    | 4        | growth                                                                                                                                                  | US EPA, 1978              |
| Scenedesmus pannonicus    | 96 h                              |                  | EC50                                  | 10                      | 1        | growth; NOEC: 3.2 mg/l                                                                                                                                  | Kuiper, 1982              |
| PLANTS                    |                                   |                  |                                       |                         |          |                                                                                                                                                         |                           |
| Lemna minor               | 48 h                              | N;S              | EC50                                  | 280                     | 2        | chlorosis; pH 5.1; temp 25°C                                                                                                                            | Blackman, et al.,<br>1955 |
| 2. Saltwater              |                                   |                  |                                       |                         |          |                                                                                                                                                         |                           |
| ALGAE                     |                                   |                  |                                       |                         |          |                                                                                                                                                         |                           |
| Skeletonema costatum      | ??                                |                  | EC50<br>EC50                          | 3.27<br>3.56            | 4        | chlorophyll A production;<br>biomass                                                                                                                    | US EPA, 1978              |
| Phaeodactylum tricornutum | 96 h                              |                  | EC50                                  | 9.6                     | 1        | growth; NOEC : 0.32 mg/l                                                                                                                                | Kuiper, 1982              |

# **APPENDIX 5**

Chlorophenols 02/2002

### LIST OF ABBREVIATIONS USED IN TABLES

| A        | =      | Analysis         | 5                                       |                                                                                                               |  |  |  |  |  |  |  |
|----------|--------|------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| С        | =      | Closed s         | Closed system or controlled evaporation |                                                                                                               |  |  |  |  |  |  |  |
| h        | =      | hour(s)          | hour(s)                                 |                                                                                                               |  |  |  |  |  |  |  |
| d        | =      | day(s)           | day(s)                                  |                                                                                                               |  |  |  |  |  |  |  |
| N        | =      | nominal          | nominal concentration                   |                                                                                                               |  |  |  |  |  |  |  |
| S        | =      | static           | static                                  |                                                                                                               |  |  |  |  |  |  |  |
| SS       | =      | semistat         | ic                                      |                                                                                                               |  |  |  |  |  |  |  |
| FT       | =      | flowthro         | ugh                                     |                                                                                                               |  |  |  |  |  |  |  |
| Validity | column | 1<br>2<br>3<br>4 | =<br>=<br>=                             | valid without restriction<br>valid with restrictions: to be considered with care<br>invalid<br>not assignable |  |  |  |  |  |  |  |

40

# Compilation of environmental monitoring data in surface waters and sediments for monochlorophenols

| 2-chlorophenol – Surface water       |                |                               |                 |  |  |  |  |  |  |  |
|--------------------------------------|----------------|-------------------------------|-----------------|--|--|--|--|--|--|--|
| Area                                 | Year of        | Concentration                 | Reference       |  |  |  |  |  |  |  |
|                                      | measurement    | (µg/l)                        | <u> </u>        |  |  |  |  |  |  |  |
| The Netherlands                      | 1076           | - 2 2 2                       | D: 1000         |  |  |  |  |  |  |  |
| 2 river sites                        | 1970<br>1077   | < 2-2.5                       | Rippen, 1998    |  |  |  |  |  |  |  |
| 24 minter freehungter sites          | 1977           | < <u>/</u>                    | Rippen, 1998    |  |  |  |  |  |  |  |
| 24 mainly rreshwater sites           | 1995           | <u>≦ 0.1</u>                  | KWS, 1997       |  |  |  |  |  |  |  |
| Cormany                              | 1              | l .                           |                 |  |  |  |  |  |  |  |
| 9 river sites                        | 1974-1986      | < 0.05-2.3                    | Rinnen 1998     |  |  |  |  |  |  |  |
|                                      | 1771 1795      | 0.00 =                        | Rippen, 1990    |  |  |  |  |  |  |  |
| United Kingdom                       | 1              | 1                             |                 |  |  |  |  |  |  |  |
| many freshwater sites                | 1994-1996      | < 0.1 mostly,                 | EU COMMPS, 1998 |  |  |  |  |  |  |  |
|                                      | -              | 90-percentile: 0.5            |                 |  |  |  |  |  |  |  |
|                                      | 2-chlorophen   | ol – Sediment                 |                 |  |  |  |  |  |  |  |
| Area                                 | Year of        | Concentration                 | Reference       |  |  |  |  |  |  |  |
|                                      | measurement    | (mg/kg dw)                    |                 |  |  |  |  |  |  |  |
| The Netherlands                      |                | <br>                          |                 |  |  |  |  |  |  |  |
| 2 freshwater sites                   | 1995           | < 0.1                         | RWS, 1997       |  |  |  |  |  |  |  |
|                                      | 3-chlorophenol | – Surface water               |                 |  |  |  |  |  |  |  |
| Area                                 | Year of        | Concentration                 | Reference       |  |  |  |  |  |  |  |
| l                                    | measurement    | (µg/l)                        |                 |  |  |  |  |  |  |  |
| The Netherlands                      |                |                               | Γ               |  |  |  |  |  |  |  |
| 2 river sites                        | 1976           | < 2-6                         | Rippen, 1998    |  |  |  |  |  |  |  |
|                                      | 1977           | < 2                           | Rippen, 1998    |  |  |  |  |  |  |  |
| 24 mainly freshwater sites           | 1995           | < 0.1                         | RWS, 1997       |  |  |  |  |  |  |  |
| 7 sites, treshwater, some estuarine/ | 1996-1997      | < 0.1                         | EU COMMPS, 1998 |  |  |  |  |  |  |  |
| marine                               |                | 1                             |                 |  |  |  |  |  |  |  |
| Company                              | 1086           | < 0.05                        | Dinnan 1008     |  |  |  |  |  |  |  |
| Q river sites                        | 1700           | < 0.05                        | Kippen, 1990    |  |  |  |  |  |  |  |
|                                      | 3-chlorophen   | ol – Sediment                 |                 |  |  |  |  |  |  |  |
| Area                                 | Year of        | Concentration                 | Reference       |  |  |  |  |  |  |  |
|                                      | measurement    | (mg/kg dw)                    |                 |  |  |  |  |  |  |  |
| The Netherlands                      |                | <u>```#`#`</u> #`/            | +               |  |  |  |  |  |  |  |
| 2 freshwater sites                   | 1996-1997      | < 0.1                         | EU COMMPS, 1998 |  |  |  |  |  |  |  |
| 4 sites (including marine)           | 1995           | < 0.1                         | RWS, 1997       |  |  |  |  |  |  |  |
|                                      | 4-chlorophenol | – Surface water               |                 |  |  |  |  |  |  |  |
| Area                                 | Year of        | Concentration                 | Reference       |  |  |  |  |  |  |  |
| l                                    | measurement    | (μ <u>g/l)</u>                |                 |  |  |  |  |  |  |  |
| The Netherlands                      |                | <br>                          |                 |  |  |  |  |  |  |  |
| 2 river sites                        | 1976           | < 2-3.9                       | Rippen, 1998    |  |  |  |  |  |  |  |
| l                                    | 1977           | < 2                           | Rippen, 1998    |  |  |  |  |  |  |  |
| 24 mainly freshwater sites           | 1995           | < 0.1                         | RWS, 1997       |  |  |  |  |  |  |  |
| many (mainly) freshwater sites       | 1994-1997      | < 0.1  mostly                 | EU COMMPS, 1998 |  |  |  |  |  |  |  |
| 1                                    | ļ              | 90-percentile: 0.05           |                 |  |  |  |  |  |  |  |
|                                      | 1              | l                             |                 |  |  |  |  |  |  |  |
| Germany<br>O river sites             | 107/ 1086      | ~ 0.05_2                      | Dinnon 1008     |  |  |  |  |  |  |  |
| 9 liver siles                        | 17/4-1700      | <ul><li>&lt; 0.05-∠</li></ul> | Kippen, 1996    |  |  |  |  |  |  |  |
| United Kingdom                       | 1              | 1                             |                 |  |  |  |  |  |  |  |
| many freshwater sites                | 1994-1997      | < 0.2 mostly.                 | EU COMMPS. 1998 |  |  |  |  |  |  |  |
| many neonwater state                 | 177            | 90-percentile: 0.1            |                 |  |  |  |  |  |  |  |
|                                      | 4-chlorophen   | ol – Sediment                 |                 |  |  |  |  |  |  |  |
| Area                                 | Year of        | Concentration                 | Reference       |  |  |  |  |  |  |  |
| l                                    | measurement    | (mg/kg_dw)                    |                 |  |  |  |  |  |  |  |
| The Netherlands                      |                |                               |                 |  |  |  |  |  |  |  |
| 2 freshwater sites                   | 1995           | < 0.1                         | RWS, 1997       |  |  |  |  |  |  |  |
| 4 sites (including 1 marine)         | 1996-1997      | mean 0.068,                   | EU COMMPS, 1998 |  |  |  |  |  |  |  |
|                                      | 1              | 90-percentile: 0.125          |                 |  |  |  |  |  |  |  |



