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Summary 
 

This dossier from Euro Chlor
1
 and the European Chlorinated Solvent Association 

(ECSA) attempts to draw together information from the open literature and from 

reports commissioned by Euro Chlor on the occurrence and potential sources and 

sinks of environmental trichloroacetic acid (TCA, CAS 76-03-9). Where possible, 

original papers have been examined and cited. However, extensive use has been 

made of the excellent prior compendia of Juuti [1997] and Schöler [1998]. The 

environmental measurements are listed (where possible as disaggregated values) 

in the appendices to this report, which cover observations of TCA itself and of the 

potential precursors: perchloroethylene and 1,1,1-trichloroethane. 

 

As a result of some sketchy experiments in the 1980s on the effect of chlorinated 

organic solvents on trees, TCA has been widely supposed to contribute to forest 

dieback. Environmental TCA was presumed to be formed exclusively from 

oxidation of chlorinated solvents. 

 

The yields of TCA from chlorinated hydrocarbon solvents are small. 

Measurements show that, while the atmospheric oxidation of perchloroethylene 

and methyl chloroform may account for some of the TCA detected in 

precipitation, large additional sources are required in order to effect a global or 

regional mass balance. 

 

Instead of the almost complete conversions originally proposed, it is estimated 

that approximately 5% of perchloroethylene (PCE) released into the atmosphere 

could be converted into trichloroacetic acid and the upper limit on the conversion 

of methyl chloroform is 1.3%. So that, on a global basis, the yields of TCA are: 

from PCE 13,600 tonnes yr
-1

 and from methyl chloroform 4,300 tonnes yr
-1

, at 

late 1990s rates. 

 

TCA is also produced during oxidative water treatment and could amount to 

55,000 tonnes yr
-1

 (from pulp and paper manufacture, potable water and cooling 

water treatments). This flux would be introduced directly into the aqueous 

environment and, because TCA is so soluble and is fully dissociated in water, it 

should be expected to remain in that phase. 

 

TCA is widely distributed in forest soils (where it was sometimes used as a 

herbicide). Calculations from environmental measurements indicate that a typical 

production rate for European forest soil would be in the region of 1,600 g ha
-1

 yr
-1

, 

with a range of 8 to 31,000 g ha
-1

 yr
-1

.  This would suggest a soil flux of 160,000 

tonnes yr
-1

 in European forests. 

 

There are many field measurements but few comprehensively chart concentrations 

in all local environmental compartments, so that there are no direct mass balances 

between precipitation, soil, biota and surface water. However, some general 

conclusions can be drawn. 

 

 

                                                 
1
 Compiled by A. McCulloch, Marbury Technical Consulting 
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TCA is ubiquitous in rainwater and snow. Its concentrations are highly variable 

and the variations cannot be connected with location or date. Washout of the 

highly soluble haloacetic acids during rain events has been demonstrated but there 

is no consistent anticorrelation between the quantity of rainfall and the TCA 

concentration (to be expected for a constant rate of input of TCA into the 

atmosphere), nor any significant difference globally between the concentrations in 

cloud, rain and snow (although local enhancement in fog water has been shown). 

A significant reduction the rainwater concentrations in rural SW Germany 

between 1988 and 1994 has been observed (far greater than the change in 

chlorinated solvent use in Europe over this period) but there is no clear trend in 

the global concentrations measured. 
 

If the input of TCA were predominantly of anthropogenic origin, one would 

expect concentrations in the Northern hemisphere to be higher than in the 

Southern. This is not the case. There is no significant difference between the 

concentrations found in Chile and in eastern Canada (by the same analysts), or 

between Malawi and Western Canada, or between Antarctica and Switzerland. 
 

TCA is present in old ice and firn. At the deepest levels, the firn was deposited 

early in the 19th century, well before the possibility of contamination by industrial 

production of reactive chlorine, implying a non-industrial background. 
 

TCA is ubiquitous in soils. Concentrations are highly variable, but there are 

some indications that soils under coniferous trees (particularly Pinus sylvestris, 

Scots pine) contain higher amounts. The analyses do not indicate why the 

concentrations there should be higher. Interestingly, the Rothamstead archive 

showed concentrations well above the current global average in samples going 

back to 1865, supporting the measurements in old ice and firn. 
 

The concentrations of TCA found in plant tissue are region-specific and may 

also be plant-specific, to the extent that conifers seem to contain more than other 

species, in general, and, in the same area, Pinus sylvestris (Scots pine) contained 

several times as much as Picea abies (Spruce). Among the lichens, Usneaceae 

contained more than Hypogymnia physodes, but the trees (Picea abies) on which 

they were growing all had similar concentrations of TCA in their needles (of 

unspecified age). 
 

A background environmental level of TCA is supported by plume 

measurements from pulp mills in Finland where a local influence was shown in 

the TCA concentration up to 20 km downwind. Beyond that, the Scots pine 

needles harvested appeared to contain a constant 20 to 40 microg kg
-1

. 
 

TCA is removed from the environment naturally. There is abundant evidence 

that soil microorganisms dehalogenate TCA, and a soil lifetime of a few weeks 

would match the observations. The loss rate of TCA from within spruce needles is 

first order with a half-life of 10 days. There is also recent evidence of an abiotic 

aqueous decarboxylation mechanism with a half-life of 22 days. 
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The supposedly widespread effects of TCA in conifer needles are not shown 

in controlled experiments. At concentrations in the needles of Scots pine similar 

to those observed in needles in forest trees, changes consequent on TCA treatment 

of field laboratory specimens were almost all insignificant. The routine 

microscopic methods, which clearly show the effects of ozone and sulphur 

dioxide, do not allow diagnosis of effects from TCA. 

 

If it is necessary to study the occurrence and environmental fate of TCA 

further, controlled field experiments would be required aimed at attempting to 

establish whether or not coniferous species, particularly Pinus sylvestris, generate 

(or otherwise interfere with) the local environmental burden and transport of 

TCA. Developments in the techniques of isotope analysis for 
2
D, 

13
C, 

14
C, 

35
Cl 

and
 37

Cl in environmental samples of TCA and PCE may prove useful in 

identifying sources in the future. 
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1. Properties of trichloroacetic acid (TCA, CCl3C(O)OH)  
 

Attribute Value Source 

Boiling point 198
o
C Juuti [1997] 

Vapour pressure 
0.14 mmHg @ 25

o
C (equiv. to 

19 Pa) 
Stull [1947] 

 21 Pa @ 25
o
C Juuti [1997] 

Water solubility 1306g/100g H2O @ 25
o
C 

Morris and Bost 

[1991] 

 1200g/l @20
o
C Juuti [1997] 

Henry's constant 7.4 x 10
4
 mol kg

-1
 atm

-1 
Juuti [1997] 

pKa 0.2159 @ 25
o
C 

Morris and Bost 

[1991] 

 0.26  Juuti [1997] 

logKOW <1 - 1.6  Juuti [1997] 

 

Some key physical and chemical properties of TCA are presented in Table 1.  

TCA is highly soluble in water and, with a Henry’s constant of 7.4 x 104 mol kg
-1

 

atm
-1

, the preferred environmental compartment where emissions will accumulate 

is the hydrosphere [Ballschmiter, 1992].  In aqueous solution TCA, with a pKa of 

0.22-0.26 is almost completely dissociated [Morris and Bost, 1991; Juuti, 1997]. 

 

2. Sources of Fluxes into the Environment - Primary 

 

2.1 Industrial Production 

Three processes were used to manufacture TCA: exhaustive chlorination of acetic 

acid, oxidation of chloral (CCl3CHO) using H2O2 and hydrolytic oxidation of 

PCE. [Morris and Bost, 1991]. It has not been possible to estimate a global 

quantity of TCA manufactured but the estimated use in West Germany during the 

period "from the 1940s until 1990" was a total of about 30,000 tonnes [Schöler, 

1998]. 

 

2.2 Uses 

Apart from small quantities used as antiseptic, most of the manufactured material 

was used, in the form of sodium trichloroacetate, as a herbicide [Morris and Bost, 

1991]. TCA was introduced in about 1950, principally to control wild grasses in 

brassicas and similar commercial crops planted in rows [Lockhart et al., 1990]. 

 

TCA is effective only in the control of monocotyledons, such as grasses. Potato, 

oil-seed rape, kale, turnip, spinach and flax are all highly resistant. Tomato, 

lettuce, alfalfa, clover, cotton, pea, sugar beet and bean plants may be grown after 

the ground has been treated with TCA [Crafts, 1961]. Application rates were 

5-10lbs/acre for annual grasses up to 50-100lbs/acre for perennials [Crafts, 1961]. 

 

It was not recommended for control of weeds in forests, because it was not 

effective on forest weeds [Williamson and Mason, 1990]. 
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2.3 Byproduct emissions 

No significant byproduct sources from chemical production have been identified 

but aqueous chlorination and oxidation processes provide a continuing input of 

TCA into the environment. Table A.2.3 shows measurements that have been made 

in drinking water and treated effluent streams, with a record value of 7.6 mg l
-1

 in 

an effluent stream from a Kraft pulp mill. 

 

During water purification by chlorination, tri- and dichloroacetic acids can be as 

abundant products of fulvates in the water as chloroform. The humate content of 

water is not a source of TCA [Morris, 1986]. 

 

Fulvic acid is of shorter chain length than humic acid and contains more -(O)OH 

groups and so is water soluble. Expressed relative to the total dissolved organic 

carbon, fulvic acid accounts for approx 20% in seawater and groundwater, 25% in 

lake water, 60% in wetlands and 40% in streams and rivers. For humic acid, the 

equivalent values are 5-10%, 5%, 5-10%, 15% and 10%, respectively, or 

approximately 4 fulvic:1 humic in each case [Thurman, 1986]. 

 

Dichlorine is not essential to the formation of chlorinated oxidation products from 

these organic acids; chloroperoxidase gives chloroform and TCA from humic 

material (i.e. material that contains both humic and fulvic acids)[Hoekstra et al., 

1995] and oxidation with ClO2 gives chloroform in almost the same way as Cl2 

[Juuti et al., 1996a]. In the first case, the sources of chlorine are chlorine ions in 

solution or absorbed onto the humic substrate. So that the availability of chlorine 

does not determine the extent of chloroform and TCA formation. 

 

As a first approximation, the upper limit for the by-product TCA flux is a quantity 

similar to the global total of chloroform from oxidative water treatment. This 

amounts to 55 Gg/yr (from pulp and paper manufacture, potable water and 

cooling water treatments) [Aucott et al., 1999]. This flux would be introduced 

directly into the aqueous environment and, because TCA is so soluble and is fully 

dissociated in water, it should be expected to remain in that phase. Speculatively, 

if environmental TCA were to be esterified, say to methyl trichloroacetate, then 

some could escape into the atmosphere. 

 

3. Sources of fluxes into the environment - Secondary 

 

3.1 Oxidation of perchloroethylene (PCE, perc, tetrachloroethene) 

There is a presumption that, because elevated levels of PCE have been measured 

in the European polluted boundary layer (see Table B1 in Appendix B), it is a 

major source of the TCA detected in rainfall there. Conversions as high as 80% 

have been claimed [Frank, 1991] but it is now recognised that the real conversion 

is much lower than this.  

 

It is generally accepted that the tropospheric oxidation of perchloroethylene 

commences with addition of a radical species such as hydroxyl (·OH) or chlorine 

(·Cl). This is the slowest part of the process, with a composite lifetime of 3.3 

months at globally averaged abundances of ·OH and ·Cl [Franklin and 

Sidebottom, 1999]. As a consequence of this relatively slow rate determining step, 

the most important mechanism acting to reduce local concentrations of material 
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that is released into the atmosphere is dispersion by mixing along the boundary 

layer and up into the free troposphere [Wingenter et al., 1996]. Thus, while the 

rate of formation of trichloroacetic acid depends on the local concentration of 

perchloroethylene, the change in perchloroethylene concentration does not give a 

direct indication of the absolute quantities of reaction products that might be 

expected in that area. 

 

Some 87% of perchloroethylene in the atmosphere reacts with ·OH and the 

principal, if not the only, product of this reaction is phosgene (COCl2) [Franklin, 

1994; Franklin and Sidebottom, 1999] with little possibility of forming 

trichloroacetic acid or its precursors. On the other hand, reaction with chlorine 

gives (after further oxidation) the pentachloroethoxy radical (CCl3CCl2O·) which, 

in turn, yields phosgene (15%) and trichloroacetyl chloride (85%). TCA would be 

formed from atmospheric trichloroacetyl chloride when it dissolves in cloud water 

and hydrolyses. Photolysis of trichloroacetyl chloride to yield phosgene is also an 

effective loss process in the troposphere, with a lifetime similar to that of 

dissolution in cloud water, and so the yield of TCA from trichloroacetyl chloride 

is calculated to be only 46%. Overall, it is estimated that, as a global average, 

approximately 5% of perchloroethylene released into the atmosphere could be 

converted into trichloroacetic acid [Franklin and Sidebottom, 1999]. 

 

However, the global value may not be indicative of local production rates or 

concentrations. The ·OH radical field is relatively well parameterised in 

atmospheric models and the global average value (9.7 x 10
5
 molecules cm

-3
 in 

Prinn et al. [1995]; 1.1 x 10
6
 molecules cm

-3
 in Montzka et al. [2000]) gives good 

results for relatively long-lived compounds such as methyl chloroform. 

 

Although the average value of 500 molecules cm
-3

 seems to be robust, the ·Cl 

radical field is not documented at all [Rudolph et al., 1996; Aucott, 1997]. Local 

chlorine radical concentrations will depend on the local oxidising power of the 

atmosphere and on the local reactive chlorine
2
 concentration, which is dominated 

by sea-salt aerosol [Keene et al., 1999]. It is therefore reasonable to expect the ·Cl 

field to be strongly biased towards the marine boundary layer, consistent with the 

results of Wingenter et al. [1996] who showed the ·Cl concentrations in the 

remote North Atlantic boundary layer to be an order of magnitude higher than the 

global average (at 3.3 to 6.5 x 10
4
 molecules cm

-3
), while the ·OH concentration 

was near the global average (0.3 to 2.6 x 10
6
 molecules cm

-3
). Assuming that the 

relative differences from the global averages are open to interpretation, they 

indicate that the local reactive chlorine concentration has more influence on ·Cl 

radical concentration than the local oxidising power. This view is reinforced by 

the results that the same group gained over the Southern Ocean in flights from 

Tasmania [Wingenter et al., 1999]. They estimated a chlorine atom concentration 

of 720±100 molecules cm
-3

 with a hydroxyl radical concentration of 6.1±0.3 x 10
5
 

molecules cm
-3

. It is possible that the ·Cl radical concentration within a 

continental landmass is significantly lower than the global average. Keene et al. 

[1999] show the reactive chlorine flux within the mid-western USA to be less than 

0.01 g Cl m
-2

 yr
-1

, over the North Atlantic Ocean about 0.1-0.2 g g Cl m
-2

 yr
-1 

and 

                                                 
2
 Reactive chlorine, as defined by Keene et al [1999] comprises those compounds containing 

chlorine that can be oxidised to release chlorine itself in the atmosphere. 
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over large areas of Western Europe to be less than 0.1 g Cl m
-2

 yr
-1

. Within this 

area there are large variations, with Switzerland showing less than 0.01 g Cl m
-2

 

yr
-1

 but with particularly high levels of 0.5 g Cl m
-2

 yr
-1

 over the North Sea. 

 

It is possible that the production of TCA by atmospheric reaction of 

perchloroethylene over Europe is actually lower than calculations based on global 

averages would predict.  

 

3.2 Oxidation of methyl chloroform (111tri, 1,1,1-trichloroethane) 

Like PCE, atmospheric oxidation of methyl chloroform has also been considered 

to be a major source of TCA, with conversions of 100% claimed [Frank, 1991].  

This is incorrect.  

 

The principal product of tropospheric decomposition of methyl chloroform is 

chloral (CCl3CHO); subsequent to H abstraction by ·OH, conversion of CCl3CH3 

to CCl3CHO by well known atmospheric oxidation processes has been shown to 

be virtually complete [Platz et al., 1995]. However, methyl chloroform is also 

photolysed in the stratosphere giving acetyl chloride, and hydrolysed in the oceans 

to acetic acid and 1,1-dichloroethene, so that only 84% of the total amount of 

methyl chloroform released into the atmosphere forms chloral [Kurylo and 

Rodríguez, 1999]. 

 

There are three possible sinks for tropospheric chloral: photolysis, which 

predominates with a lifetime of only a few hours and has a quantum yield close to 

unity [Starke et al., 1989; Barry et al., 1994; Rattigan et al., 1998; Franklin and 

Wenger, 2000]; reaction with OH, for which the lifetime is 5.4 days [Rattigan et 

al., 1998] and dissolution in cloud water. Despite its high solubility in water, the 

uptake of chloral in clouds is governed by atmospheric mixing and the lifetime of 

this process is a minimum of 10 days [Giorgi and Chameides, 1986; Kindler et 

al., 1995]. 

 

Only reaction in cloud water could possibly give TCA and the fraction of chloral 

that is absorbed in clouds is calculated to be 1.6% (on chloral) or 1.3% of the 

methyl chloroform released [Franklin and Sidebottom, 1999; Franklin and 

Wenger, 2000]. Subsequent oxidation of the dissolved chloral hydrate by 

dioxygen and ·OH in the cloud to yield TCA is possible but has not been 

demonstrated. For the purposes of further calculations, it is assumed that the 

reaction does proceed and so an upper limit on the conversion of methyl 

chloroform is 1.3%.  Folberth and colleagues concluded that "methyl chloroform 

can be ruled out as one of the major global TCA sources in the atmosphere" 

[Folberth et al., 1999]. 

 

3.3 Mass balance of TCA in the atmosphere 

The quantities of TCA that may be formed by both of the anthropogenic potential 

precursors are very much smaller than had been supposed in the old literature and 

a mass balance between the sources and the observed concentrations is instructive. 

On a global basis, the yields of TCA are: from PCE 13,600 tonnes and from 

methyl chloroform 4,300 tonnes, at the atmospheric burdens and loss rates typical 

of the late 1990s. 
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Based on releases of PCE into the atmosphere [McCulloch et al., 1999], the 

atmospheric concentration of methyl chloroform [Kurylo and Rodríguez, 1999] 

and the conversions described in 3.1 and 3.2 above, Franklin and Sidebottom 

[1999] calculated the expected average concentrations of TCA that could be 

expected in precipitation in Europe, Antarctica and the Arctic. Their results are 

not adjusted for local variations in, for example, ·Cl radical concentration and 

may be taken to be realistic concentrations arising from anthropogenic sources. 

The concentrations anticipated from both precursors were 0.11 microg l
-1

 for 

Europe (50
o
N), 0.04 microg l

-1
 in the Antarctic (72-75

o
S) and 0.05 microg l

-1
 in 

the Arctic (64-77
o
N). 

 

Reference to Table A.2.1 shows that these are at the low end of the range of 

observations. In Europe, the lowest measured concentration was in Switzerland at 

less than 0.03 microg l
-1

 in rainwater; the highest was 20 microg l
-1

 in rain in 

urban Berlin and an unweighted average of the mean determinations would be 0.5 

microg l
-1

 and, while the average weighted by rainfall could well be lower than 

this, it is not possible to quantify the difference. Similarly, observations exceed 

estimates in the Antarctic where, although there are fewer measurements, there is 

less spread; the minimum being 0.022 μg l
-1

 and the maximum 0.348 μg l
-1

 with 

0.12 μg l
-1

 as the average of the means. There is somewhat better agreement in the 

Arctic, where the values ranged from not detected to a maximum of 0.035 μg l
-1

 

with an average of 0.01 μg l
-1

. However, most of the measurements show that, 

while the oxidation of perchloroethylene and methyl chloroform makes a 

significant contribution to the atmospheric flux of trichloroacetic acid, other 

sources cannot be ruled out and may, themselves, be significant regionally 

[Thüner et al., 1999]. 

 

3.4 Soil Processes 

Significant TCA production from acetic acid has been observed in laboratory 

experiments, even without enzymatic catalysis. Furthermore, in the presence of a 

catalyst - chloroperoxidase from Caldariomyces fumago - plus sodium chloride 

and hydrogen peroxide, the yield rose to 308 microg g
-1

 (of acetic acid). From a 

commercial sample of humic (including fulvic) acid the yield was 200µg g
-1

 in the 

presence of chloroperoxidase and 150µg g
-1

 without. [Haiber et al., 1996]  

 

Hoekstra and de Leer [1993] showed both TCA and chloroform to be formed 

from humic material, hydrogen peroxide, chloride and chloroperoxidase and went 

on subsequently to demonstrate the production of TCA in real soil in forest 

environments, with the natural background of chloride ion as the source of soil 

chlorine [Hoekstra et al., 1999a and 1999b]. 

 

From these and other measurements Schöler [1998] calculated that a typical 

production rate for European forest soil would be in the region of 1600 g ha
-1

 yr
-1

. 

By contrast, the addition from rainwater would be 1000 times less, at 1.6 

g ha
-1

 yr
-1

. Given the forested land area of Europe (102 million hectares [Eurostat, 

2000]), the calculated flux of TCA from forest soil would be 160,000 tonnes yr
-1

 

in Europe alone. 
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4. Observed Occurrence of TCA in the Environment 

 

4.1 Air 

The data are listed in Appendix A, Table A.1. 

There are surprisingly few actual measurements of TCA in air but the data (which 

range from 0.006 to 0.7 ng m
-3

) are consistent between analysts and with 

observations in precipitation at the same time and place [Peters, 2000]. 

 

4.2 Environmental water 

 

4.2.1 Contemporary precipitation 

The data are listed in Appendix A, Tables A.2.1 (a) covering rain, snow and fresh 

ice and A.2.1 (b) covering throughfall. 

 

The only safe conclusion from the data from open areas is that TCA is ubiquitous 

in rainwater and snow. It is clear that its concentrations are highly variable and 

that the variations cannot be connected with location or date. Although washout of 

the highly soluble haloacetic acids has been demonstrated by Berg et al. [2000], 

Clemens [1993] did not find a consistent anticorrelation between the quantity of 

rainfall and the TCA concentration (to be expected for a constant rate of 

generation of TCA in the atmosphere), nor is there any consistent difference 

between the concentrations in cloud, rain and snow. There is no clear trend in time 

in the global data set (the apparent trend is not significant and is heavily biased by 

two high results early in the time series). Furthermore, due to the wide variability 

between locations, any temporal trend analysis would require a long time series at 

the same site. 

 

If the input of TCA were predominantly of anthropogenic origin, one might 

expect concentrations in the Northern hemisphere to be higher than in the 

Southern. This is not the case. There is no significant difference between the 

concentrations found in Chile and in Eastern Canada (by the same analysts), or 

between Malawi and Western Canada, or between Antarctica and Switzerland.  

This may be a consequence of different rainfall patterns. 

 

As with rainfall sampled in open areas, the concentrations in throughfall are 

highly variable but, in general, the levels of TCA in rain below a tree canopy are 

significantly higher than those in the open in the same locality. Schöler [1998] 

adopted a factor of two, which seems reasonable. The only source of the 

additional TCA is the trees themselves but these analyses do not help to 

discriminate between TCA that has been sequestered from the atmosphere, or 

generated in and on the leaf and needle surface or that which was generated in the 

soil and carried through the tree by transpiration before being excreted at the 

foliage. This phenomenon of "guttation", transportation of soluble materials such 

as amino acids and sugars through the plant's xylem system with subsequent 

excretion in water droplets on the leaf surface is well known for mono- and 

dicotyledonous plants but has not yet been shown for conifers [Von Scheffer et al., 

1965; Goatley et al., 1966; Lütge, 1973; Guttridge et al, 1981; Dawson, 1993; 

Eschrich, 1995]. 
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4.2.2 Contemporary Surface Water 

4.2.2 (a) Surface water (other than rivers and lakes) 

Results are shown in Appendix A, Table A.2.2 (a). Given the high solubility of 

TCA, the fact that it is found in surface water is not surprising. Unfortunately the 

few results available do not show a significant difference from concentrations in 

precipitation, so no conclusions can be drawn from them regarding the source(s) 

of TCA. 

 

4.2.2 (b) Rivers  

The set of determinations in Appendix A, Table A.2.2 (b) does not cover a 

sufficiently wide geographical area for any global significance to be assessed. 

However, the concentrations in Germany and Switzerland are, in general, similar 

to or below the concentrations in contemporary rainfall in the same area. This 

would be expected from the work reported in 5.4 below. The high levels in the 

polluted rivers at Chemnitz, Germany, and Tokyo, Japan, are readily explained by 

the generation of TCA in oxidative water treatment processes which is well 

characterised (see 4.2.3). 

 

4.2.2 (c) Lakes 

These results (Appendix A, Table A.2.2 (c)) are interesting because they show a 

variation with depth in lakes in both Switzerland and Canada, that is not expected 

solely from riverborne input of a highly soluble material. However, while the high 

concentrations in deep waters indicate the presence of TCA there, they do not 

discriminate between TCA that is transported to that region absorbed onto, say 

insoluble humic substances, and TCA that is generated there. 

 

4.2.2 (d) Seawater 

Results for Tokyo Bay, showing a mean of 1.7 microg l
-1

 which is significantly 

higher than the concentrations measured in lakes and rivers in Europe, are given 

in Appendix A, Table A.2.2 (d). Judging from contemporaneous measurements in 

rivers feeding Tokyo Bay, the source of this material would seem to be polluted 

drainage from the Tokyo metropolitan area.  

 

4.2.3 Treated Waters 

The results in Appendix A, Table A.2.3 amply demonstrate the production of 

TCA in aqueous treatments and the fact that it follows the aqueous effluent 

stream. In the work of Benanou et al. [1998], the background TCA in surface 

water was shown to be reduced to zero in the treatment process by filtration but 

subsequently TCA was reintroduced by oxidation, with either ozone or chlorine. 

Presumably the source of chlorine in the ozone oxidation was chloride ion, as in 

chloroperoxidase reactions. 

 

According to Juuti et al. [1996a], TCA does not appear in the range of products 

determined in the volatile organics released from aqueous effluent from wood 

pulp bleaching. It is to be expected that TCA itself would not evaporate and 

would follow the water stream. Methyl dichloroacetate was detected in significant 

amounts in the volatiles before the effluent was treated but there is no record of 

methyl trichloroacetate. 
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4.3 Historical Environmental Water 

 

Concentrations of TCA determined in old ice, firn and groundwater samples are 

recorded in Appendix A, Table A.3. Considerable care was taken to ensure that 

the old ice and firn samples were not contaminated by the present environment 

and, in the case of firn, it was shown that contamination through the years was 

highly unlikely due to the involatility of the trichloroacetate, present as salts, and 

very low ionic mobility in general in frozen firn at -51
o
C. At the deepest levels, 

the firn was deposited early in the 19th century, well before the possibility of 

contamination by industrial production of reactive chlorine. 

 

4.4 Soil 

 

The results, including those of a comprehensive survey of European soils, are 

shown in Appendix A, Table A.4 and plotted as a frequency distribution in Figure 

1. Again, as in precipitation and run-off, TCA is shown to be ubiquitous, being 

below the limit of detection (generally 0.05 μg kg
-1

) in only 13% of the 114 

determinations listed. Concentrations in soils are very variable and, while 60% of 

the determinations were less than 0.5 μg kg
-1

, the remainder spanned a wide range 

(up to 150 μg kg
-1

). There are some indications that soils 
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Figure 1. Frequency distribution of mean concentrations of TCA in soils, 

worldwide (Data in Appendix A, Table A.4). 

 

under coniferous trees (particularly Pinus sylvestris, Scots pine) contain higher 

amounts. There are also indications, from Germany, Chile, Malawi and Canada, 

that concentrations are higher in the surface layer (down to 10cm) than in deeper 

layers, although the extensive work by Peters [2000] failed to show a correlation 

with depth of sample. Interestingly, the Rothamstead archive showed significant 

concentrations in historic samples. The high concentrations in the sample dating 

from 1865 may, however, be the result of contamination. The results from the 

Caucasus mountains show that altitude alone does not have a significant influence 

on TCA levels. 

 



Trichloroacetic acid in the environment 

 

 13 

4.5 Biota 

 

Plants 

The concentrations of TCA found in plant tissue and recorded in Appendix A, 

Table A.5, are certainly region-specific and may also be plant-specific, to the 

extent that conifers seem to contain more than other species, in general, and, in 

the same area, Pinus sylvestris (Scots pine) contained several times as much as 

Picea abies (Spruce). Among the lichens, Usneaceae contained more than 

Hypogymnia physodes, but the trees (Picea abies) on which they were growing all 

had similar concentrations of TCA in their needles (of unspecified age).  In the 

case of Norway spruce (Picea abies) the principal translocation path for TCA is 

uptake from soil into the root system, thence to the needles via the transpiration 

stream [Matucha et al., 2000]. 

 

Concentrations in the Caucasus were an order of magnitude lower than those in 

either Finland or Czechoslovakia, in fact generally lower than the background 

level evident in Finland (see below). The samples from the Caucasus enable the 

examination of regional variations over relatively short distances and show no 

variation either with height (at 1 standard deviation) or with season (April vs. 

July/August). There were significant differences (again 1) within the delta of the 

R. Volga and the shores of the Caspian Sea and on the steppe south of Volgograd. 

 

The transects down and cross-wind of Kraft pulp mills that were performed by 

Juuti et al. [1995] present a unique view of the influence of a known 

anthropogenic source. TCA is known to be present in the aqueous effluent from 

these processes (see 4.2.3) and there is a clear and significant enhancement of 

TCA concentrations in the needles of Pinus sylvestris (3rd year growth) within 

5 km of the plant. 

 

In the downwind series from about 20 km onwards the differences between the 

measurements are not significant. Furthermore, the series of measurements on the 

parallel track at the same distance is statistically similar, leading to the conclusion 

that, although the pulp mills might have exerted an influence locally (within the 

first 20 km), this was additional to a background level of 20-40 microg kg
-1

. The 

route by which TCA enters the atmosphere from a pulp mill is not obvious from 

these results. In the work described in 4.2.3, TCA has been identified only in 

aqueous effluent and, judged solely by the Henry's constant (7.4 x 10
4
 mol kg

-1
 

atm
-1

, see Section 1), it should remain in the aqueous phase. However, it is known 

to be carried through plant tissue from the root system [Sutinen et al., 1995] and to 

have higher loadings in precipitation beneath the forest canopy [Schöler, 1998].  
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Figure 2: TCA in 3rd year growth Scots pine needles (Pinus sylvestris) and 

distance of the trees from two Kraft pulp mills. Solid line signifies downwind, 

dotted line signifies across and downwind (on a parallel track 48 km from the 

downwind series). Cross bars signify 1sigma uncertainties. 

 

These processes alone could effect a migration of TCA into the forest local to the 

pulp mill and away from contaminated water courses. There is also the possibility 

that TCA would form comparatively volatile esters (such as methyl 

trichloroacetate) in the environment, although these were not observed in their 

atmospheric and aqueous effluents. 

 

Animal Tissue 
The clams (Tapes japonica) sampled from three Japanese rivers in 1995 and 1996 

appeared to have concentrated TCA from water that was contaminated with 

municipal waste water and industrial effluent. Contemporary samples of the river 

sediment failed to show TCA and neither the clams nor the sediment contained 

significant amounts of chlorinated solvents. Furthermore, in vitro experiments 

failed to show metabolism of trichloroethylene or perchloroethylene by clam 

tissue.   

 

5. Removal Processes 

 

5.1 Air 

The principal removal mechanism of airborne TCA is dissolution in cloud or rain-

water. Because of its very high water solubility and Henry's constant (see section 

1 - Properties) the lifetime of free trichloroacetic acid by this removal process 

(including uptake by the oceans) is governed by atmospheric mixing and is 10 

days at most [Kindler et al., 1995; Kolb et al., 1995]. Salts of trichloroacetic acid 

(e.g. ammonium trichloroacetate) are similarly soluble and would have similar 

lifetimes but solubility data for esters of TCA (such as methyl trichloroacetate) 
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have not been found. Even if they were only sparingly soluble in water, their 

lifetimes would increase by a factor of only two or three (by analogy with 

substances such as phosgene) [Kindler et al., 1995].  The secondary removal 

process, reaction with hydroxyl radicals, has a lifetime of 84 days and has 

relatively little influence on atmospheric concentrations [Carr et al., 1996]. 

 

5.2 Soil 

There is abundant evidence that soil microorganisms dehalogenate chlorinated 

aliphatic acid herbicides, particularly dalapon and TCA, and can use the carbon 

content as a sole source of energy. Eight active soil bacteria (from Pseudomonas 

sp., Arthrobacter sp. and Pseudomonas dehalogens), seven fungi (from 

Trichoderma viride, Clorostachys sp. and Acrostalagmus sp.) and two 

actinomycetes (from Nocardia sp.) have been identified [Foy, 1975]. 

 

Phytotoxic residues of TCA usually disappear from soil within 30-90 days [Foy, 

1975]. The fastest degradation occurs on wet soil with high organic content and 

the slowest on dry, sandy soil [Foy, 1975]. In 12 weeks there was little 

degradation on sandy soil, most had disappeared on silt within 12 weeks and 

decomposition was "rapid" on a "muck" containing 82% organics [Crafts, 1961]. 

 

Based on full application rates (50-100 lbs/acre, equivalent to 55-110 kg ha
-1

) and 

the most sensitive crop species (cereals), phytotoxicity of TCA persists in the soil 

for 3-6 months [Riley and Eagle, 1990].  However, more recent studies using [1,2-
14

C] TCA have shown that microamounts of TCA, such as those found 

environmentally, are rapidly degraded in soil [Forczek et al., 2000]. The same 

group also found that TCA was rendered less labile (and so less available) by 

absorption onto old wood, compost and similar carbonaceous components of the 

soil [Matucha et al., 2000]. 

 

5.3 Large plants 

TCA sprayed onto spruce needles is slowly absorbed; 380 microg kg
-1

 on the 

surface at the start of the laboratory experiment resulted in a maximum internal 

concentration at 15 days of about 20 microg kg
-1

. Thereafter, the internal 

concentration decayed to about 15 microg kg
-1

 in ten days [Frank, 1991].  

 

The surface loss rate was first order in TCA, going from 380 to 100 microg kg
-1

 in 

25 days. Accumulation in the needle tissue was independent of the surface 

concentration and seemed to be first order in concentration in the needles, with an 

accumulation rate of 0.04 d
-1

. This rather strange result would mean that the 

absolute flux of TCA into the needles increases with their internal TCA 

concentration (or perhaps with the duration of exposure to TCA - see 6. Effects 

below). Furthermore, for no apparent reason the accumulation switches to a loss 

process, again first order, with a time constant of 0.03 d
-1

. Taken at their face 

value, and assuming that accumulation continued at the prior rate during the 

period when internal concentration was shown to fall (so that the observed value 

is the difference between the accumulation and loss rates), these results indicate a 

loss rate in spruce needles of 0.07 d
-1

, presumed to be biological.  
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TCA has been shown to be cometabolised by microorganisms degrading ethanol 

under anaerobic conditions. The organisms appear to be dechlorinating TCA and 

will completely metabolise it at loadings up to 35 mg l
-1

 [Kim et al., 2000]. 

 

5.4 Water 

In a water course spiked with a pulse dose of TCA, none was detected after 48 

hours and 14.5 km below the treatment site [Foy, 1975]. This may not be 

indicative of chemical or biological removal since absorption of TCA into 

sediments and the river bank could produce the same result. 

 

Decarboxylation in the laboratory by conventional methods was shown to be 

rather slow, with a rate constant of 1.6 x 10
-5

 s
-1

 at 70
o
C [Hine et al., 1957] (4 x 

10
-5

 s
-1

 at 76
o
C in Fairclough [1938]). In the presence of water in solution in 

dimethyl sulphoxide and using 1,3,5-trinitrobenzene to trap the CCl3
-
 carbocations 

formed, TCA was shown to decarboxylate at 25
o
C with a rate constant of 6 x 10

-3
 

s
-1

 [Atkins et al., 1984].  

 

Recently, however, TCA has been shown to decompose abiotically in water to 

give low (0.4 to 2.6 % conversion over 3 hours) yields of chloroform and 

perchloroethylene in the molar ratio 2:1. A decarboxylation mechanism in which 

the CCl3
-
 carbocation reacts with either H

+
 or forms dichlorocarbene (:CCl2) 

would fit the observations. In addition, TCA has been shown to form esters with 

substances such as dimethoxyphenol (a model for humic acid) which subsequently 

decompose giving chloroform, perchloroethylene and 2-chloro-3,5-

dimethoxyphenyltrichloroacetate [Müller, 1996]. The apparent differences in 

these results may be a consequence of photo-oxidation reactions of the sort 

described by Spangenberg et al. [1996]. 
 

Recent environmental measurements have given rise to a wide range of estimates 

for the residence time of TCA in lake and river waters. The shortest was 8 days, 

for the disappearance of TCA during infiltration of river water into ground water 

in Switzerland [Berg et al., 2000] but this may have been influenced by the same 

factors as in Foy [1975]. Ellis et al. [2000], working in field aquatic microcosms 

showed removal over 40 days (including an induction period). Other rates were 

much slower, with Hashimoto et al. [1998] finding no loss in river water after 30 

days (but 20% loss in seawater over 9 days), and Müller et al. [1996] deducing a 

half-life of more than 230 days from measurements in a Swiss lake. 

 

6. Environmental Effects 

 

TCA was introduced as a weedkiller that preferentially attacked monocotyledons; 

it could be used with relative impunity at application rates very much higher than 

the environmental loadings discussed here (see section 2.2 Uses). Although TCA 

is ubiquitous in the environment, it is particularly connected with conifers and 

there is a presumption that TCA is responsible for a significant part of forest die-

back. The evidence for this is largely circumstantial (for example Frank et al., 

[1990]), and not borne out by its action on pine seedlings, which has been studied 

comprehensively and directly at real environmental loadings.  
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TCA is absorbed into scots pine (Pinus sylvestris) via both the roots and the 

needle surfaces [Sutinen et al., 1995]. It passes through the roots with the 

transpiration stream and there is some evidence for metabolism in this stream, up 

to a threshold (unspecified). Concentrations in needles up to 750 microg kg
-1

 were 

achieved by sequential dosing but, with this route into the plant, there was no 

statistically significant change (at 1) in the mean area of the chloroplasts of the 

mesophyll cells (10.5±0.6 microm
2
 for the control and 10.3±1.5 microm

2
 with a 

needle loading of 750 microg kg
-1

). By contrast, when applied to the needles, 

TCA solutions at 50 mg l
-1

 gave concentrations up to 283 microg kg
-1

 in the 

needles and reduced the mean area of the chloroplasts from 12.2±2.4 to 7.8±1.3 

microm
2
.  

 

Physiologically, application of TCA to the needles disintegrated the structure of 

the epicuticular waxes and that of the stomatal cells. The extent of the effect was 

concentration and time dependent. A large fraction of the TCA (80%) remains on 

the needle surface and continues to cause disintegration of the stomatal cells and 

deterioration of the epistomatal waxes. This may account for the behaviour 

observed by Frank [1991], described in 5.3 above. However, the dosing 

concentrations used were 1 and 50 mg l
-1

 (roughly 1,000 times environmental 

concentrations and corresponding to pH in the range 3.5 to 5.2). It is possible that 

the needle effects were simply a response to acid attack. 

 

Solutions of lower acidity were used in subsequent experiments (Sutinen et al. 

reported in Juuti [1997]). In this case the exposure (via both roots and needles) 

was to 0.5 mg l
-1

 and 1 mg l
-1

 solutions (pH 5.5 to 5.2). The results showed that 

TCA was reversibly absorbed. The needle concentration of 16 microg kg
-1

 before 

the first dosage rose to 250 microg kg
-1

 at the higher dose rate and 60 microg kg
-1 

at the lower within three weeks. However, when dosing stopped, the 

concentrations fell, ending at 35 microg kg
-1

 in the needles of the seedlings treated 

with 0.5 mg l
-1

 TCA and 60 microg kg
-1

 at the higher dosage concentration. The 

higher dose rate gave a small but significant increase in chlorophyll 

concentration. Chlorophyll a/b ratio and net photosynthesis were not significantly 

different from the control and the small drop in transpiration rate seen with both 

TCA treatments was not significant. Changes in ultrastructure (chloroplast area 

and number, and starch grain area) were not significant in these tests, neither was 

the small reduction in dry weight after TCA treatment. 

 

The concentrations observed in the needles were within those observed in needles 

in the field and the changes consequent on TCA treatment were almost all 

insignificant. The routine microscopic methods, which clearly show the effects of 

ozone and sulphur dioxide, do not allow diagnosis of effects from TCA.  

 

In the same dose regime, changes were observed in oxidative metabolism 

(peroxidase, POX) and conjugation (glutathionine S-transferase, GST) [Schröder 

et al., 1997]. Although none of the treated plants showed visible stress symptoms, 

induction of these enzymes of xenobiotic metabolism may be a stress response to 

TCA. It was speculated that the enhancement of enzyme activities might suggest a 

possible involvement of glutathionine dependent detoxification but more work 

would be needed to substantiate the hypothesis.  
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Very little ill effect, if any, was observed in these controlled experiments, in 

contrast to some of the very early work where extensive chlorophyll bleaching 

was imputed to aerial incorporation of chlorinated solvents into spruce (Picea 

omorica) needles and subsequent degradation to halogenated acids by UV light 

(for example Frank and Frank, 1985; 1986]. These are not considered further here 

because the experimental controls were such that confounding effects of 

parameters (such as the use of UVC to simulate environmental UV) could not be 

ruled out. 

 

7. Conclusions 

 

The yields of TCA from chlorinated hydrocarbon solvents are small; 

measurements show that, while the atmospheric oxidation of perchloroethylene 

and methyl chloroform may account for some of the TCA detected in 

precipitation, large additional sources are required in order to effect a global or 

regional mass balance. Instead of the almost complete conversions originally 

proposed, it is estimated that approximately 5% of perchloroethylene released into 

the atmosphere could be converted into trichloroacetic acid and the upper limit on 

the conversion of methyl chloroform is 1.3%. So that, on a global basis, the yields 

of TCA are: from PCE 13,600 tonnes yr
-1

 and from methyl chloroform 4,300 

tonnes yr
-1

, at late 1990s rates. 

 

TCA is also produced during oxidative water treatment and could amount to 

55,000 tonnes yr
-1

 (from pulp and paper manufacture, potable water and cooling 

water treatments). This flux would be introduced directly into the aqueous 

environment and, because TCA is so soluble and is fully dissociated in water, it 

should be expected to remain in that phase. 

 

TCA is widely distributed in forest soils (where it was rarely used as an 

herbicide). Calculations from environmental measurements indicate that a typical 

production rate for European forest soil would be in the region of 1600 g ha
-1

 yr
-1

 

(range 8 to 31,000 g ha
-1

 yr
-1

) and the flux from the 102 million hectares of forest 

soils in Europe could be in the region of 160,000 tonnes yr
-1

. 

 

TCA is ubiquitous in rainwater and snow. Its concentrations are highly variable 

and the variations cannot be connected with location or date. Nor is there an 

anticorrelation between the quantity of rainfall and the TCA concentration (to be 

expected for a constant rate of generation of TCA in the atmosphere), nor any 

significant difference between the concentrations in cloud, rain and snow. There is 

no clear trend in time.  

 

If the input of TCA were predominantly of anthropogenic origin, one would 

expect concentrations in the Northern hemisphere to be much higher than in the 

Southern. This is not the case. There is no significant difference between the 

concentrations found in Chile and in Eastern Canada (by the same analysts), or 

between Malawi and Western Canada, or between Antarctica and Switzerland.  

 

TCA is present in old ice and firn. At the deepest levels, the firn was deposited 

early in the 19th century, well before the possibility of contamination by industrial 

production of reactive chlorine, implying a non-industrial background.   
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TCA is ubiquitous in soils. Concentrations are very variable but there are some 

indications that soils under coniferous trees (particularly Pinus sylvestris, Scots 

pine) contain higher amounts. Interestingly, the Rothamstead soil archive showed 

significant concentrations, supporting the measurements in old ice and firn. The 

highest concentration in the oldest sample studied (1865) may be the result of 

contamination and is still under investigation. 

 

The concentrations of TCA found in plant tissue are region-specific and may also 

be plant-specific, to the extent that conifers seem to contain more than other 

species, in general. In the same area, Pinus sylvestris (Scots pine) contained 

several times as much as Picea abies (Spruce). Among the lichens, Usneaceae 

contained more than Hypogymnia physodes, but the trees (Picea abies) on which 

they were growing all had similar concentrations of TCA in their needles (of 

unspecified age). 

 

The likelihood of a background environmental level of TCA is supported by 

plume measurements from pulp mills in Finland where a local influence was 

shown in the TCA concentration up to 20 km downwind. Beyond that, the Scots 

pine needles harvested appeared to contain a constant 20 to 40 microg kg
-1

. 

 

TCA is removed from the environment naturally. There is abundant evidence that 

soil microorganisms dehalogenate TCA, and a soil lifetime of a few weeks would 

match the observations. The loss rate of TCA from within spruce needles is first 

order with a constant of 0.07 d
-1

. There is also recent evidence of an aqueous 

decarboxylation mechanism with a half-life of 22 days. 

 

The supposed highly adverse botanical effects of TCA are not shown in controlled 

experiments. At concentrations in the needles of Scots pine similar to those 

observed in needles in forest trees, changes consequent on TCA treatment of field 

laboratory specimens were almost all insignificant. The routine microscopic 

methods, which clearly show the effects of ozone and sulphur dioxide, do not 

allow diagnosis of effects from TCA. 

 

8. Suggestions for the Future 

 

The greatest single difficulty with interpreting these results is that many of the 

data are disparate and intercomparisons are difficult, perhaps impossible in some 

cases. The underlying reason is that most of the studies were carried out to 

investigate a subset of the environmental fate of TCA so that not all relevant data 

were collected. Thus, for example, concentrations in rainfall and pine needles 

were measured but not in air or soil in the same area. The most pressing need is 

that, in all future studies, the TCA concentrations are measured in all 

environmental compartments that would be important to a field experiment. 

Similarly, in much of the work to date there have been presumptions, about the 

source of TCA or the route by which it enters plant species, that serve to confound 

the results, especially if not all of the relevant information is gathered. 

 

Developments in the techniques of isotope analysis for 
2
D, 

13
C, 

14
C, 

35
Cl and 

37
Cl 

in environmental samples of TCA and PCE may prove useful in helping to 
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determine the sources of the TCA that has been observed in precipitation and soil. 

Some of these techniques may be applied now but full implementation awaits 

determination of the base data that will enable rigorous interpretation of results 

from field samples. The current status of these techniques was the subject of a 

workshop held on 29 January 2001 and is discussed separately in proceedings that 

will be published shortly. 
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APPENDIX A. Measurements of environmental TCA concentrations 

 

A.1 Measurements of TCA in air 

 
Date Location ng m

-3
  ng m

-3
 Source 

  mean SD n min max  

    21 0.03 0.3 (1) reported in (2) 

     0.006 0.5 (3) reported in (4) 

1999 Speulderbos, Apeldoorn, NL 0.7     (5) 

1999 Bleiswijk, Rotterdam, NL <0.5     (5) 

 
Sources: (1) Frank et al. [1995]; (2)  Juuti [1997]; (3) Klein [1997]; (4)  Jordan & Frank [1999]; 

(5) Peters [2000] 

 

A.2 Measurements of TCA in water 

 

A.2.1 Contemporary precipitation         

A.2.1 (a) Rain, snow and ice         

         

Date Location Rain or microg l
-1
  microg l

-1
 Comment Source 

  snow mean SD n min max   

1988-89 SW Germany, open land R 0.44 median 34 0.119 3.3 8 sites* (1) reported in (2) 

1988-91 Canada (Mt Tremblanc Q) Cloud    n.d. 2.5  (3) 

1990-91 Berlin (urban)(D) (all) R    0.1 20  (4) reported in (2) 

1990-91 Berlin (urban)(D) (open field) R 2.1      (4) reported in (2) 

1990-91 Bonn (environ.) (D) R 0.8 0.25 median  7.5  (5) reported in (2) 

Aug-91 Spitzbergen S n.d.  3    (6) 

Dec-91 Grossenbach (s.rural)(Siegen) (D) R 0.57 annual average <0.1   (6) 

1989-91 open field (rural D) R 0.44 median 34 0.02 3.27  (7) reported in (2) 

Feb-92 Oberjoch (Alps) S 0.4 0.05 2    (6) 

Jun-92 Grossenbach (s.rural)(Siegen) (D) R     2  (6) 

Dec91-Nov92 Hau (rural) (D) R    0.08 0.21  (6) 

Jan/Oct 92 Hau (rural) (D) R 0.15 0.12 median 0.08 0.3  (8) reported in (2) 

1991-93 Bleche (rural) (D) R 0.16 median  0.05 9.7  (9) reported in (2) 

1991-93 Bleche (rural) (D) S 0.09 median  0.03 0.4  (9) reported in (2) 

1991-93 Austria    85 0.01 0.3  (10) reported in (2) 

1993 Switzerland  0.3   <0.03 0.9  (11) reported in (2) 

1993 Switzerland R 0.3   0.044 0.71  (12) reported in (2) 

1993-94 open field (rural D) R 0.12 median 29 0.055 0.46  (7) reported in (2) 

1993-94 N. Sweden/Norway S 0.019 0.01 16 <0.005 0.037  (13) 

1993-94 Antarctica, Dronning Maud  S 0.053 0.038 6 0.022 0.118  (13) 

Jun/Jul-94 Russia (tundra) S 0.009 n.s.s. 5 <0.005 0.035  (13) 

Nov-94 Canada (BC) S 0.026 0.018 4 0.006 0.043  (13) 

1994-95 Kuopio (urban Finland) R&S 0.1  18 0.02 0.21  (14) 

1994-95 Kuopio (urban Finland) R 0.12 Difference between R&S not  (14) 

1994-95 Kuopio (urban Finland) S 0.8 statistically significant  (14) 

1995 Switzerland R 0.13 no difference: Zurich & Alpthal  (12) 

1993-94 SW Germany, open land R 0.124 median 115 <0.03 0.8 11 sites
+
 (15) 

1993-94 SW Germany, open land R 0.118 median 29 0.021 0.56 11 sites* (15) 

1996-97 Antarctica, Filchner-Ronne  S 0.195 0.12 6 0.058 0.348  (16) 

A.2.1 (a) Rain, snow and ice (con.)        

Date Location Rain or microg l
-1
  microg l

-1
 Comment Source 

  Snow mean SD n min max   
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1997 Canada 94W to 123W  <0.006  28   4 sites (17) 

1997 Canada (Algoma 84W)  0.033  11    (17) 
1997 Canada (Chapais 74W)  0.039  11    (17) 
1997 Canada (Kejimkujik 65W)  0.144  11 <0.006 0.87  (17) 

1996-97 Switzerland R&S 0.24  73   6 sites (18) 

1998 S. Scotland (forest) R    0.09 1  (19) 

1986-98 Canada (Mt Sutton Q) cloud    n.d. 2.3  (3) 

Mar/May-99 Canada (Chapais, Ont.) R&S 0.04 0.026 6    (20) 

Mar/May-99 Canada (Algoma, Ont.) R&S 0.26 0.33 4    (20) 

 Canada (Kedji, NS) R    n.d. 1.58  (21) 

Feb/Mar-99 Malawi (Senga Bay) R 0.026 0.024 14    (20) 

May/Jul-99 Chile (urban; Concepcion) R 0.42 0.325 35    (20) 

May/Sep-99 Chile (rural) R 0.24 0.25 35    (20) 

Nov-99 Speulderbos, Apeldoorn, NL R 0.16      (22) 

Nov-99 Bleiswijk, Rotterdam, NL R 0.15      (22) 

 
Notes: n.d. signifies not determined; n.s.s. signifies not statistically significant 

 * determinations carried out by the same technique, in the same location and showing a 

difference in time  

Sources: (1) Schleyer et al. [1991]; (2) Schöler [1998]; (3) Scott et al. [1999a]; (4) Plümacher 

[1995]; (5) Schöler et al. [1991]; (6) Haiber et al. [1996]; (7) Schleyer et al. [1996]; (8) Fillibeck et 

al. [1995]; (9) Clemens [1993]; (10) Lorbeer et al. [1994]; (11) Müller et al. [1996]; (12) Reimann 

et al. [1996]; (13) von Sydow et al. [1999]; (14) Juuti [1997]; (15) Schleyer [1996]; (16) von 

Sydow et al. [2000]; (17) Scott et al. [2000a]; (18) Berg et al. [2000]; (19) Reeves et al. [1999]; 

(20) Scott et al. [2000b]; (21) Scott et al. [1998]; (22) Peters [2000]. 

 

 

A.2.1 (b) Throughfall        

        

Date Location microg l
-1
  microg l

-1
 Comment Source 

  mean SD n min max   

1989-91 Rural Germany 2.68 median 35 0.69 6.85  (1) reported in (2) 

 Spruce Forest 0.7 0.1 29 n.d. 2.2  (3) reported in (4) 

 Beech Forest 0.3 0.02 23 n.d. 0.69  (3) reported in (4) 

1990-91 Berlin (urban)(D) 0.1      (5) reported in (2) 

1989-95 Spruce Forest 0.7 median 46 <0.03 2.3 4 sites (6) 

1989-95 Beech Forest 0.16 median 34 <0.03 1.03 3 sites (6) 

1989-95 Mixed Woodland 0.19 median 21 <0.03 0.94 2 sites (6) 

1993-94 Rural Germany 0.63 median 30 0.55 2.33  (1) reported in (2) 

 
Sources: (1) Schleyer et al. [1996]; (2) Schöler [1998]; (3) Fillibeck et al. [1995]; (4) 

Hoekstra [1999]; (5) Plümacher [1995]; (6) Schleyer [1996]. 
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A.2 Contemporary surface water 

A.2.2 (a) Surface (other than rivers and lakes)        

         

Date Location  microg l
-1
  microg l

-1
 Comment Source 

   mean SD n min max   

Oct-93 Osterzgebirge (D) bog 0.53 0.08 3    (1) 

Jul-95 SW Germany pond 0.33 0.05 3    (1) 

Jul-95 Odenwald (D) bog 0.33 0.07 3    (1) 

Jul-95 Black Forest (D) bog 1 0.12 3    (1) 

 Spruce forest soil pore 0.6 0.3 8 0.36 1.3  (2) reported in (3) 

 Agricultural land soil pore 1 2 8 0.14 5  (4) 

1989-95 SW Germany spruce forest soil pore   25 n.d. 0.46 4 sites (5) 

1989-95 SW Germany beech forest soil pore   16 n.d. 0.08 3 sites (5) 

1989-95 SW Germany mixed woodland soil pore   20 n.d. 0.16 2 sites (5) 

1989-95 SW Germany open land soil pore   28 n.d. 0.7 7 sites (5) 

1996-97 Schanghau, Switzerland moor 0.015   0.007 0.03  (6) 

 

Notes: n.d. signifies not detected (limit not specified) 

Sources: (1) Haiber et al. [1996]; (2) Renner & Mülhausen [1989]; (3) Hoekstra [1999]; (4) 

Renner et al. [1990]; (5) Schleyer [1996]; Berg et al. [2000]. 

 

 A.2.2 (b) Rivers       

Date Location  microg l
-1
 microg l

-1
 Source 

  River/location mean n min max (all reported in (2)) 

1992-93 Switzerland (10 rivers)  0.14 27 <0.03 0.34 (1) 

1992-93 Switzerland (alpine rivers)    <0.03  (1) 

1992-93 Switzerland  Aare 0.32    (1) 

1995 Germany (4 rivers)   9 0.12 0.6 (3) 

1995 Germany Neckar  4 0.15 0.51 (4) 

1995-96 Germany Heidelberg  2 0.08 0.33 (4) 

1995 Germany Rhein  3 0.1 0.16 (4) 

1995 Germany Sieg  2 0.05 0.21 (4) 

1996 Germany Schönau  2 0.09 0.09 (4) 

1995 Germany Saar 0.2 1   (4) 

1995 Germany Luek <0.03 1   (4) 

1995 Germany Mosel 0.22 1   (4) 

1995 Germany Wupper 0.11 1   (4) 

1995 Germany Naab 0.06 1   (4) 

1995 Germany Donau 0.05 1   (4) 

1995 Germany Regen <0.03 1   (4) 

1995 Germany Elsenz 0.16 1   (4) 

1996 Germany Chemnitz 1.88 1   (4) 

1996 Japan Sen   2.5 4.6 (5) 

1996 Japan Kurome 4.1    (5) 

1996 Japan Yagami   2.6 5.8 (5) 

1996 Japan, Tokyo region Rivers 4.55 38 0.07 22.0 (6) 

1996 Japan, Tokyo region Canals 5.93 22 0.07 20.3 (6) 

1996-97 Switzerland various rivers 0.114 80 0.014 0.7 (7) 

Sources: (1) Müller et al. [1996]; (2) Schöler [1998]; (3) Frank et al. [1995]; (4) Bertram [1996] 

(see (2)); (5) Hashimoto and Otsuki [1998]; (6) Hashimoto et al. [1998]; Berg et al. [2000]. 
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A.2.2 (c) Lakes      

       

Date Location Depth or microg l
-1
  Comment Source 

  position mean n   

1992-93 Switzerland (Greifensee) Hypolimnion 0.06   (1) reported in (2) 

1992-93 Switzerland (Greifensee) Epilimnion 0.13  other lakes less than 0.1  (1) reported in (2) 

 Canada (Great Slave Lake)  0.004 1 2 other lakes n.d. (3) 

 Canada (Lake Winnipeg)  0.037 1 also n.d in Huron, Erie & (3) 

 Canada (Lake Superior) spring  n.d. 3 Ontario (3) 

 Canada (Lake Superior) summer Lakehead 0.003 4 2 other stations n.d. (3) 

1996 Canada (L. Simcoe, Ont.)  0.14   (4) 

1996-97 Switzerland Alt. <500m 0.058 20 3 eutrophic  mid-alt. lakes (5) 

1996-97 Switzerland alt. >2330m 0.46 8 4 shallow glacial lakes (5) 

1997 Sweden (L. Groevelsjoen, Dalarna)  0.017   (4) 

1997-98 Canada (Lake Superior) 60m 0.35   (6) 

1997-98 Canada (Lake Superior) 90m 0.25   (6) 

1997-98 Canada (Lake Superior) 120m 0.13   (6) 

1997-98 Canada (Lake Superior) 150m 0.23   (6) 

1997-98 Canada (Lake Superior) 180m n.d.   (6) 

1997-98 Canada (Lake Superior) 210m 0.22   (6) 

1997-98 Canada (Lake Superior) 270m n.d.   (6) 

1997-98 Canada (Lake Erie) Surface 0.13   (6) 

1997-98 Canada (Lake Erie) 10m 0.15   (6) 

1997-98 Canada (Lake Erie) 28m 0.18   (6) 

1997-98 Canada (Lake Erie) 34m 0.2   (6) 

1997-98 Canada (Lake Erie) 40m 0.4   (6) 

1997-98 Canada (Lake Erie) 50m 0.53   (6) 

1997-98 Canada (Lake Erie) 60m 0.24   (6) 

 
Sources: (1) Müller et al. [1996]; (2) Schöler [1998]; (3) Scott et al. [1998]; (4) von Sydow 

[1998]; (5) Berg et al. [2000]; (6) Scott et al. [1999b]. 

 

A.2.2 (d) Seawater 

 

Date Location Microg l
-1
  microg l

-1
 Source 

  Mean SD n min max  
1996 Tokyo Bay, Japan    0.98 1.55 1 

1996-97 Tokyo Bay, Japan 1.7  62 <0.07 14.9 2 

 
Sources: (1) Hashimoto and Otsuki [1998]; (2) Hashimoto et al. [1998]. 
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A.2.3 Treated waters 

 

Date Location microg l
-1
  Microg l

-1
 Source 

  mean SD n Min max  

       

A.2.3 (a) Drinking water       

 Netherlands    0 1.4 (1) reported in (2) 

 Netherlands    0.02 0.9 (1) reported in (3) 

 Canada (Hamilton, Ont.) 8.4 3.3 3   (4) 

 Canada (Burlington) 2.9     (4) 

 Switzerland, non-chlorinated    n.d. 0.04 (5) reported in (6) 

 Switzerland, non-chlorinated 0.083  6 n.d. 0.225 (7) 

 Switzerland, chlorinated    n.d. 0.8 (5) reported in (6) 

 USA    4 54 (8) reported in (2) 

 USA    30 160 (9) reported in (2) 

 France (20 sources) 4.3  20 <0.1 11.6 (10) 

       

A.2.3 (b) Sewerage treatment plant       

1993 Switzerland, 5 plants 1.4   0.27 3.6 (11) reported in (3) 

  0.43   0.04 1.1 (11) reported in (3) 

  0.3  1   (12) reported in (3) 

  1  1   (12) reported in (3) 

 Municipal 3  1   (5) reported in (6) 

1996 Tokyo, Japan    2.9 7.4 (13) 

1996-97 Switzerland 0.002  17 0.0001 0.03 (7) 

       

A.2.3 (c) Industrial       

 Kraft bleaching plant  7600     (14) reported in (2) 

 Pulp mill waste 295  1   (5) reported in (6) 

 Pulp mill waste 104  1   (5) reported in (6) 

 "Industrial waste water", Switzerland 0.122  5 0.001 0.54 (7) 

       

A.2.3 (d) Swimming pools       

 Germany   4 6 112 (5) reported in (6) 

 Switzerland 0.045  4 0.017 0.095 (7) 

 

Sources: (1) Peters et al. [1991]; (2) Sinkkonen et al. [1998]; (3) Schöler [1998]; (4) Scott et 

al. [1998]; (5) Reimann [1996]; (6) Hoekstra [1999]; (7) Berg et al. [2000]; (8) Norwood et 

al. [1986]; (9) Uden & Miller [1983]; (10) Benanou et al. [1998]; (11) Müller et al. [1996]; 

(12) Bertram [1996] (see (3)); (13) Hashimoto & Otsuki [1998]; (14) Yu & Welander 

[1994]. 
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A.3 Historical environmental water 
 

Date Location  microg l
-1
  microg l

-1
 Comment Source 

   mean SD n min max   

         

A.3 (a) Old Ice         

ca 1900 Alps - Monte Rosa Ice 0.1 0.04 3    (1) 

 Storglaciaren (SE) Ice <0.005      (2) 

 Marmaglaciaren (SE) Ice 0.013      (2) 

 Antarctica, Filchner-Ronne  Firn 0.007     36m below surface (2) 

 Antarctica, Filchner-Ronne  Firn 0.01     42m below surface (2) 

19th century Antarctica, Filchner-Ronne  Firn 0.009     46m below surface (2) 

 Antarctica, Dronning Maud  Firn    0.014 0.038 0-5m below surface (3) 

 Antarctica, Dronning Maud  Firn    0.004 0.012 5-10m below surface (3) 

 Antarctica, Dronning Maud  firn    0.005 0.017 10-15m below surface (3) 

19th century Antarctica, Dronning Maud  firn    0.003 0.04 15-20m below surface (3) 

         

A.3 (b) Groundwater         

 SW Germany, 9 wells  0.034  183 n.d. 0.21 
At least one non-zero 
value in each well 

(4) 

 Germany    110 0.02 0.9  (5) reported in (6) 

         (7) reported in (6) 

1996 SW Germany, 5 wells    7 <0.03 0.09  (8) reported in (9) 

 
Switzerland, old 
groundwater 

 n.d.  3   15000±1800 yrs. B.P. (10) 

 

Sources: (1) Haiber et al. [1996]; (2) von Sydow et al. [1999]; (3) von Sydow et al. [2000]; 

(4) Schleyer [1996]; (5) Renner et al. [1990]; (6) Juuti [1997]; (7) Müller et al. [1996]; (8) 

Bertram [1996] (see (9)); (9) Schöler [1998]; Berg et al. [2000]. 
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A.4 Soil          

         

Date Location Depth microg kg
-1 

 microg kg
-1 

Comment Source 

  cm/or mean SD n min max (predominant vegetation)  

  horizon        

1865/81, 1944/56 Rothamstead archive (UK) 0-10 30  4 <1 110 

vegetation not known, 
earliest  sample possibly  
contaminated 

(1) 

1986 Freudenstadt, Germany  100 200 5 20 380 Coniferous forest (2) 

Nov-91 - Jul-92 Fochteloo NL  1.6 0.9 3 1 2.7 Peat moor (3) 

Nov-91 - Jul-92 De Wieden NL  3.4 0.9 4 2.6 4.6 Peat bog (3) 

Nov-91 - Jul-92 Speulderbos, Apeldoorn, NL  0.4 0.4 3 0.2 0.9 Beech (3) 

Nov-91 - Jul-92 Speulderbos, Apeldoorn, NL  0.5 0.5 4 0.2 1.3 Douglas fir (3) 

 Berlin (D) O 40 40    Pine (5) reported in (4) 

 Berlin (D) A 7 4    Pine (5) reported in (4) 

 Berlin (D) B 3 4    Pine (5) reported in (4) 

 Berlin (D) O 8 2    Agricultural (5) reported in (4) 

 Berlin (D) A 0.92 0.05    Agricultural (5) reported in (4) 

 Berlin (D) B 0.08 0.004    Agricultural (5) reported in (4) 

 Hessian Odenwald (D)  3.8     R. sediment (Rotwasser) (6) 

Apr-97 Caucasus 2200m asl  0.04     Pinus Sylvestris (7) 

Jul/Aug-97 Caucasus 2200m asl  0.09     Pinus Sylvestris (7) 

Apr-97 Caucasus 300m asl  0.22     Pinus Sylvestris (7) 

Apr-97 Caucasus 800m asl  0.31     Pinus Sylvestris (7) 

Jul/Aug-97 Caucasus 800m asl  0.21     Pinus Sylvestris (7) 

Apr-97 Caucasus (height not spec.)  0.24     Pinus Sylvestris (7) 

Jul/Aug-97 Caucasus (height not spec.)  0.35     Pinus Sylvestris (7) 

Apr-97 Caucasus 2000m asl  0.46     Pinus Sylvestris (7) 

Jul/Aug-97 Caucasus 2000m asl  0.39     Pinus Sylvestris (7) 

Jul/Aug-97 Caspian Sea (Volga delta)  0.32     Pinus Sylvestris (7) 

Apr-97 Caspian Sea (Volga delta)  1.09     Pinus Sylvestris (7) 

Jul/Aug-97 Caspian Sea (Volga delta)  1.06     Pinus Sylvestris (7) 

Apr-97 Steppe S of Volgograd  0.34     Pinus Sylvestris (7) 

Jul/Aug-97 Steppe S of Volgograd  0.22     Pinus Sylvestris (7) 

Apr-97 Steppe S of Volgograd  0.08     Pinus Sylvestris (7) 

Jul/Aug-97 Steppe S of Volgograd  0.22     Pinus Sylvestris (7) 

Apr-97 40km W of Moscow  0.1     Pinus Sylvestris (7) 

Jul/Aug-97 40km W of Moscow  n.d.     Pinus Sylvestris (7) 

Jul-99 Chile (11 sites) 0-10 22   0.3 152 Pinus radiata (1) 

Jul-99 Chile (11 sites) 10-20 5.4   0.3 21 Pinus radiata (1) 

Jul-99 of which, 4 sites 0-20 <1     Pinus radiata (1) 

Jul-99               4 sites 0-10 <1     Pinus radiata (1) 

Jul-99               2 sites 10-20 <1     Pinus radiata (1) 

Jul-99               Chungara 0-10 62     Pinus radiata (1) 

Jul-99               Cotacotani 10-20 4     Pinus radiata (1) 

Jul-99               Masi (site (a)) 0-10 152     Pinus radiata (1) 

Jul-99               Masi (site (b)) 10-20 13     Pinus radiata (1) 

Jul-99               Polcura 10-20 14     Pinus radiata (1) 

Jul-99               Risopatron 10-20 130     Pinus radiata (1) 

Jul-99               Venus 0-10 20     Pinus radiata (1) 
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4.4 Soil (con.)         

Date Location Depth microg kg
-1
 

 
microg kg

-1
 Comment Source 

  cm/or mean SD n min max (predominant vegetation)  

  horizon        

Jul-99               Venus (Chile) 10-20 24     Pinus radiata (1) 

13 Oct 99 Speulderbos, Apeldoorn, NL 10 0.44     Spruce, humic soil (8) 

13 Oct 99 Speulderbos, Apeldoorn, NL 30 0.18     Spruce, humic soil (8) 

13 Oct 99 Speulderbos, Apeldoorn, NL 100 0.21     Spruce, sandy soil (8) 

13 Oct 99 Speulderbos, Apeldoorn, NL 10 0.26     non agricult., sandy soil (8) 

13 Oct 99 Speulderbos, Apeldoorn, NL 30 0.34     non agricult., sandy soil (8) 

13 Oct 99 Speulderbos, Apeldoorn, NL 100 0.44     non agricult., sandy soil (8) 

13 Oct 99 Bleiswijk, Rotterdam, NL 10 <0.05     deciduous, sandy soil (8) 

13 Oct 99 Bleiswijk, Rotterdam, NL 30 <0.05     deciduous, sandy soil (8) 

13 Oct 99 Bleiswijk, Rotterdam, NL 100 0.14     deciduous, sandy soil (8) 

13 Oct 99 Bleiswijk, Rotterdam, NL 10 <0.05     non agricult., clay soil (8) 

13 Oct 99 Bleiswijk, Rotterdam, NL 30 <0.05     non agricult., clay soil (8) 

13 Oct 99 Bleiswijk, Rotterdam, NL 80 0.13     non agricult., clay soil (8) 

20 Oct 99 Freudenstadt, Germany 10 2.1     Spruce, humic soil (8) 

20 Oct 99 Freudenstadt, Germany 30 5.4     Spruce, humic soil (8) 

20 Oct 99 Freudenstadt, Germany 60 12     Spruce, humic soil (8) 

20 Oct 99 Freudenstadt, Germany 10 1.3     non agricult., sandy soil (8) 

20 Oct 99 Freudenstadt, Germany 30 1.9     non agricult., sandy soil (8) 

20 Oct 99 Freudenstadt, Germany 90 0.63     non agricult., sandy soil (8) 

23 Oct 99 Kiel, Germany 10 0.81     Spruce, humic soil (8) 

23 Oct 99 Kiel, Germany 30 1.4     Spruce, humic soil (8) 

23 Oct 99 Kiel, Germany 80 0.33     Spruce, sandy soil (8) 

23 Oct 99 Kiel, Germany 30 0.18     non agricult., sandy soil (8) 

23 Oct 99 Kiel, Germany 100 0.29     non agricult., sandy soil (8) 

26 Oct 99 Mölndal, Göteborg, Sweden 10 0.29     Spruce, humic soil (8) 

26 Oct 99 Mölndal, Göteborg, Sweden 30 <0.05     Spruce, humic soil (8) 

26 Oct 99 Mölndal, Göteborg, Sweden 70 0.63     Spruce, sandy soil (8) 

26 Oct 99 Mölndal, Göteborg, Sweden 10 <0.05     non agricult., sandy soil (8) 

26 Oct 99 Mölndal, Göteborg, Sweden 30 0.22     non agricult., sandy soil (8) 

26 Oct 99 Mölndal, Göteborg, Sweden 80 0.30     non agricult., sandy soil (8) 

15 Nov 99 Sherwood Forest, Notts., UK 10 1.26     Spruce, humic soil (8) 

15 Nov 99 Sherwood Forest, Notts., UK 30 0.19     Spruce, sandy soil (8) 

15 Nov 99 Sherwood Forest, Notts., UK 70 0.18     Spruce, sandy soil (8) 

15 Nov 99 Sherwood Forest, Notts., UK 10 0.11     non agricult., sandy soil (8) 

15 Nov 99 Sherwood Forest, Notts., UK 30 0.23     non agricult., clay soil (8) 

15 Nov 99 Sherwood Forest, Notts., UK 80 0.27     non agricult., clay soil (8) 

16 Nov 99 Aberfoyle, Scotland, UK 10 <0.05     Spruce, humic soil (8) 

16 Nov 99 Aberfoyle, Scotland, UK 30 0.20     Spruce, humic soil (8) 

16 Nov 99 Aberfoyle, Scotland, UK 60 0.18     Spruce, sandy soil (8) 

16 Nov 99 Aberfoyle, Scotland, UK 10 <0.05     non agricult., sandy soil (8) 

16 Nov 99 Aberfoyle, Scotland, UK 30 0.23     non agricult., sandy soil (8) 

16 Nov 99 Aberfoyle, Scotland, UK 80 0.15     non agricult., sandy soil (8) 

18 Nov 99 Fosso, near Venice, Italy 10 0.63     Spruce, humic soil (8) 

18 Nov 99 Fosso, near Venice, Italy 30 0.16     Spruce, humic/sandy soil (8) 

18 Nov 99 Fosso, near Venice, Italy 80 0.14     Spruce, sandy soil (8) 

18 Nov 99 Fosso, near Venice, Italy 10 0.17     non agricult., sandy soil (8) 
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4.4 Soil (con.)         

Date Location Depth microg kg
-1
 

 
microg kg

-1
 Comment Source 

  cm/or mean SD n min max (predominant vegetation)  

  horizon        

18 Nov 99 Fosso, near Venice, Italy 30 0.10     non agricult., sandy soil (8) 

18 Nov 99 Fosso, near Venice, Italy 80 0.11     non agricult., sandy soil (8) 

19 Nov 99 Nami, near Rome, Italy 10 0.37     Spruce, humic soil (8) 

19 Nov 99 Nami, near Rome, Italy 30 0.09     Spruce, humic soil (8) 

19 Nov 99 Nami, near Rome, Italy 100 <0.05     Spruce, sandy soil (8) 

19 Nov 99 Nami, near Rome, Italy 10 <0.05     non agricult., sandy soil (8) 

19 Nov 99 Nami, near Rome, Italy 30 0.11     non agricult., sandy soil (8) 

19 Nov 99 Nami, near Rome, Italy 80 <0.05     non agricult., sandy soil (8) 

25 Nov 99 Jessheim, Oslo, Norway 10 0.23     Spruce, humic soil (8) 

25 Nov 99 Jessheim, Oslo, Norway 30 0.46     Spruce, humic soil (8) 

25 Nov 99 Jessheim, Oslo, Norway 60 <0.05     Spruce, sandy soil (8) 

25 Nov 99 Jessheim, Oslo, Norway 10 <0.05     non agricult., sandy soil (8) 

25 Nov 99 Jessheim, Oslo, Norway 30 0.08     non agricult., sandy soil (8) 

25 Nov 99 Jessheim, Oslo, Norway 80 <0.05     non agricult., sandy soil (8) 

Dec-99 Lancaster (rural) UK 0-10 8.5  5 <1 29 non agricultural field (1) 

1999 Malawi (3 sites) 0-10 2.6   <1 9 Conifer (unspecified) (1) 

1999 Malawi (3 sites) 10-20 <1   <1 3 Conifer (unspecified) (1) 

Feb-00 Canada (2 sites) 0-10 5.4   <1 19 Conifer (unspecified) (1) 

Feb-00 Canada (2 sites) 10-20 4   <1 10 Conifer (unspecified) (1) 

Feb-00 of which, Guelph W 0-10 1     Conifer (unspecified) (1) 

Feb-00               Guelph E 0-10 5     Conifer (unspecified) (1) 

Feb-00               Burlington 0-10 0.5     Conifer (unspecified) (1) 

Feb-00               Burlington 10-20 0.5     Conifer (unspecified) (1) 

 
Notes: n.d. signifies not detected (limit not specified) 

 

Sources: (1) Scott et al. [2000]; (2) Frank [1988]; (3) Hoekstra and de Leer [1993]; (4) Hoekstra 

[1999]; (5) Plümacher [1995]; (6) Bertram [1996] (see Schöler [1998]); (7) Weissflog et al. 

[1999]; (8) Peters [2000]. 

 

 

A.5 Biota          

  Needle       

Date Location Age 
microg kg

-1
  

fr. wt.  
microg kg

-1
  

fr. wt. Comment Source 

  yrs mean SD n min max   

Plants          

1989-90 Bernstein, N. Black Forest (D) 1   15 4 67 Spruce needles (1) 

1989-90 680-750 m asl 2   15 8 96 Spruce needles (1) 

1989-90 Schönbuch, S. of Stuttgart (D) 1   11 3 25 Spruce needles (1) 

1989-90 360m asl 2   12 10 50 Spruce needles (1) 

1989-90 Black Forest (D) 1 11  1   Fir needles (2) 

1989-90 Black Forest (D) 2 16  1   Fir needles (2) 

1990s Ore Mts. Czech Rep. 1   2 28 106 Picea abies needles (3) 

1990s Ore Mts. Czech Rep. 2   2 90 126 Picea abies needles (3) 

1990s Ore Mts. Czech Rep. 3 47 38 10 11 126 Picea abies needles (3) 

     29 0.2 6 Vegetables, fruit, grains 
(4) reported 

in (6) 

     9 <1 44 Deciduous forest leaves (5) 

 Various European     1600 0.6 178 conifer needles (6) 
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4.5 Biota (con.)         

Date Location Age 
microg kg

-1
 

fr. wt.  
microg kg

-1
 

fr. wt. Comment Source 

  yrs mean SD n min max   

Autumn Pallastunturi (SF) 3 29  89 6 160 Pinus sylvestris needles (6) & (7) 

winter Sodankyla (SF) 3 22  10 16 69 Picea abies needles (6) & (7) 

autumn Rovaniemi (SF) 3 23  57 6 64 Pinus sylvestris needles (6) & (7) 

winter Taivalkoski (SF) 3 24  13 18 36 Picea abies needles (6) & (7) 

autumn Joensuu (SF) 3 12  10 6 39 Picea abies needles (6) & (7) 

summer Ilomantsi (SF) 3 74  10 33 180 Pinus sylvestris needles (6) & (7) 

summer Jamijarvi (SF) 3 45  10 20 73 Pinus sylvestris needles (6) & (7) 

autumn Janakkala (SF) 3 18  10 13 49 Pinus sylvestris needles (6) & (7) 

autumn Janakkala (SF) (2nd site) 3 6  9 1 16 Pinus sylvestris needles (6) & (7) 

 Sodankyla (lichen)  90 median  75 128 Usneaceae  (7) 

 Sodankyla (needles)  28 median  25 42 on Picea abies (7) 

 Taivalkoski (lichen)  138 median  110 193 Usneaceae  (7) 

 Taivalkoski (needles)  25 median  23 33 on Picea abies (7) 

 Joensuu (lichen)  15 median  10 16 Hypogymnia physodes  (7) 

 Joensuu (needles)  13 median  12 23 on Picae abies (7) 

 Riihimaki (lichen)  6 median  5 9 Hypogymnia physodes  (7) 

 Riihimaki (needles)  12 median  8 24 on Picae abies (7) 

1993 Various German forests 1 4.4 median 12 0.9 19.3 conifer needles, species (8) 

  2 5.3 median 8 0.7 30.7 not known (8) 

1993-94 Finland downwind of kraft pulp        

 mill - 5km, 20m asl 3 171 55 14 92 276 Pinus sylvestris needles (9) 

         9km, 35m asl 3 57 34 17 11 116 Pinus sylvestris needles (9) 

         9km, 40m asl 3 99 54 6 16 171 Pinus sylvestris needles (9) 

        12km, 70m asl 3 94 53 12 28 202 Pinus sylvestris needles (9) 

        22km, 80m asl 3 32 10 6 18 45 Pinus sylvestris needles (9) 

        32km, 90m asl 3 33 13 10 15 53 Pinus sylvestris needles (9) 

        36km, 115m asl 3 60 28 12 16 116 Pinus sylvestris needles (9) 

        46km, 145m asl 3 32 24 6 6 71 Pinus sylvestris needles (9) 

        55km, 145m asl 3 41 16 6 28 64 Pinus sylvestris needles (9) 

        61km, 145m asl 3 29 13 5 11 45 Pinus sylvestris needles (9) 

        78km, 140m asl 3 30 13 6 6 43 Pinus sylvestris needles (9) 

Feb-94 Finland crosswind from kraft pulp        

 mill - 5km, 5m asl 3 7 2 6 5 11 Pinus sylvestris needles (9) 

       25km, 10m asl 3 68 38 5 29 111 Pinus sylvestris needles (9) 

       48km, 10m asl 3 13 3 5 10 18 Pinus sylvestris needles (9) 

       51km, 45m asl 3 28 18 5 11 54 Pinus sylvestris needles (9) 

       54km, 80m asl 3 8 1 4 6 9 Pinus sylvestris needles (9) 

       60km, 100m asl 3 56 27 5 15 83 Pinus sylvestris needles (9) 

1996 Various German forests 1 2.7  21 0.8 16.7 Conifer needles, (8) 

  2 3.6  10 1.9 10.5 species not known (8) 

  3 4.7  10 2 7.6  (8) 

Apr-97 Caucasus 2200m asl 2 3.18 0.95    Pinus sylvestris needles (10) 

Jul/Aug-97 Caucasus 2200m asl 2 3.54 1.5    Pinus sylvestris needles (10) 

Apr-97 Caucasus 300m asl 2 4.99 2.79    Pinus sylvestris needles (10) 

Apr-97 Caucasus 800m asl 2 4 1.12    Pinus sylvestris needles (10) 

Jul/Aug-97 Caucasus 800m asl 2 5.2 1.82    Pinus sylvestris needles (10) 

Apr-97 Caucasus (height not spec.) 2 3.91 0.88    Pinus sylvestris needles (10) 

Jul/Aug-97 Caucasus (height not spec.) 2 5.15 1.4    Pinus sylvestris needles (10) 

Apr-97 Caucasus 2000m asl 2 7.25 3.94    Pinus sylvestris needles (10) 
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4.5 Biota (con.)         

Date Location Age 
microg kg

-1
 

fr. wt.  
microg kg

-1
 

fr. wt. Comment Source 

  yrs mean SD n min max   

Jul/Aug-97 Caucasus 2000m asl 2 5.28 2.1    Pinus sylvestris needles (10) 

Jul/Aug-97 Caucasus 1500m asl 2 4.29 0.16    Pinus sylvestris needles (10) 

Jul/Aug-97 Caspian Sea (W shore) 2 8.69 1.61    Pinus sylvestris needles (10) 

Jul/Aug-97 Caspian Sea (Volga delta) 2 3.15 1.39    Pinus sylvestris needles (10) 

Apr-97 Caspian Sea (Volga delta) 2 20.73 5.8    Pinus sylvestris needles (10) 

Jul/Aug-97 Caspian Sea (Volga delta) 2 27.4 9.99    Pinus sylvestris needles (10) 

Jul/Aug-97 R. Volga valley 2 10.37 17.12    Pinus sylvestris needles (10) 

Apr-97 Steppe S of Volgograd 2 6.85 2.71    Pinus sylvestris needles (10) 

Jul/Aug-97 Steppe S of Volgograd 2 10.07 2.73    Pinus sylvestris needles (10) 

Apr-97 Steppe S of Volgograd 2 28.43 9.44    Pinus sylvestris needles (10) 

Jul/Aug-97 Steppe S of Volgograd 2 68.91 37.97    Pinus sylvestris needles (10) 

Apr-97 40km W of Moscow 2 5.28 0.79    Pinus sylvestris needles (10) 

Jul/Aug-97 40km W of Moscow 2 n.d.     Pinus sylvestris needles (10) 

Jul-99 Chile (8 sites) 1 <1    <2 Pinus Radiata needles (11) 

Mar-98 
Canada (Banff Nat. Park, 15 
sites) 

1 <1    <1 
Picea glauca, Abies 
liasiocarpa needles 

(11) 

1999 Netherlands      25 
Kale exposed to PCE @ 
NOEC (2000 μg m

-3
) 

(12) 

1999 Netherlands      7 
Bean exposed to PCE @ 
NOEC (46 μg m

-3
) 

(12) 

1999 Netherlands      3 
Bean exposed to PCE @ 
NOEC (2000 μg m

-3
) 

(12) 

Oct-99 Speulderbos, Apeldoorn, NL  6.4     Spruce needles (13) 

Oct-99 Bleiswijk, Rotterdam, NL  7.7     deciduous leaves (13) 

Oct-99 Freudenstadt, Germany  6.8     Spruce needles (13) 

Oct-99 Kiel, Germany  17     Spruce needles (13) 

Nov-99 Mölndal, Göteborg, Sweden  5.5     Spruce needles (13) 

Nov-99 Sherwood Forest, Notts., UK  12     Spruce needles (13) 

Nov-99 Aberfoyle, Scotland, UK  9.8     Spruce needles (13) 

Nov-99 Fosso, near Venice, Italy  5.4     Spruce needles (13) 

Nov-99 Nami, near Rome, Italy  5.1     Spruce needles (13) 

Nov-99 Jessheim, Oslo, Norway  4.7     Spruce needles (13) 

Feb-00 Canada (Guelph, Ont.) 1 2     Pine needles (11) 

 Malawi  1 3     Conifer needles (11) 

 Lancaster UK  1 87     Conifer needles (11) 

Animal Tissue          

1995 Ariho R., Yamaguchi, Japan  21 2 5   Clam Tapes japonica (13) 

1995 Koe R., Yamaguchi, Japan  50 6 5   Clam Tapes japonica (13) 

1995 Okita R., Yamaguchi, Japan  < 1     Clam Tapes japonica (13) 

1996 Ariho R., Yamaguchi, Japan  27 3    Clam Tapes japonica (13) 

1996 Koe R., Yamaguchi, Japan  69 4    Clam Tapes japonica (12) 

 
Notes; n.d. signifies not detected (limit unspecified), asl signifies above sea level, * signifies that 

the results are awaited. 

 
Sources: (1) Frank [1991]; (2) Frank et al. [1990]; (3) Matucha et al. [1999]; (4) Reimann 

et al. [1996]; (5) Frank [1988]; (6) Juuti [1997]; (7) Juuti et al. [1996b]; (8) Frank et al., 

[1998]; (9) Juuti et al. [1995]; (10) Weissflog et al. [1999]; (11) Scott et al. [2000]; (12) van 

der Eerden et al. [2000]; (13) Gotoh et al. [1998]. 
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APPENDIX B. Measurements of perchloroethylene and methyl chloroform 

in the atmosphere and in biota 

 

Measurements of the environmental concentrations of the man-made potential 

precursors to trichloroacetic acid are listed in the following tables. 

 

Table B.1. Perchloroethylene in the atmosphere      

         

Date Location 
microg 

m
-3
 ppt     

  mean mean SD n min max Source 

Aug-Sep-86 Mauzenberg, B.F.(D) 740m asl 0.89  0.42 13   (1) 
 Bernstein, B.F.(D) 600m asl 0.78  0.54 13   (1) 
 Sulzbach, B.F.(D) 320m asl  0.63  0.22 13   (1) 
 Schönbuch, B.F.(D) 460m asl 0.69  0.38 13   (1) 
 Cities (unspecified) 6.7      (2) reported in (3) 
1986-87 Black Forest (B.F.)(D) 1.2 median   0.2 25 (3) 
Sep-87 Mauzenberg, B.F.(D) 740m asl 1.9 air 1.8 6   (4) 
  3 soil 0.6 6   (4) 
 Bernstein, B.F.(D) 600m asl 2.5 air 1.8 4   (4) 
  3.8 soil 0.5 4   (4) 
 Schönbuch, B.F.(D) 460m asl 0.9 air 0.5 6   (4) 
  3.4 soil 0.7 6   (4) 
1986-1988 SW Germany (B.F., 4 sites) 0.9    0.2 20 (5) repeated in (6) 
Nov-88 SW Germany     32 0.2 8.3 (6) repeated in (7) 
 S of Lisbon (P)    31 0.1 2 (6) repeated in (7) 
 Madeira    3 0.1 0.1 (6) repeated in (7) 
Nov-88 - Mar-89 Centre of Tübingen (D) 2    1 120 (7) 
 Rastatt Northern B.F. (D) 1    0.2 9 (7) 
 S of Lisbon (P) 0.3    0.1 20 (7) 
 Madeira 0.2    0.02 0.5 (7) 
1989 Remote Atlantic NH          ppt  13 6    (8) 
 microg m

-3
 0.10  0.04    calculated from (8) 

1989 Remote Atlantic SH          ppt  2.7 4    (8) 
 microg m

-3
 0.02  0.03    calculated from (8) 

Sep 1991 North Sea                         ppt     10 14 (9) reported in (13) 
 Arctic                                ppt 2.2      (9) reported in (13) 
Sep-Oct-91 W. Pacific lats >25N         ppt  7.2  149 2.1 231 (10) 
 microg m

-3
 0.05    0.02 1.71 calculated from (10) 

 W. Pacific lats <25N         ppt  2.7  172 0.9 35 (10) 
 microg m

-3
 0.02    0.01 0.26 calculated from (10) 

Jun-92 Madeira/Azores                ppt  16 7  7 59 (11) 
 microg m

-3
 0.12  0.05  0.05 0.44 calculated from (11) 

Sep-Oct-92 Brazil (Tocantins)             ppt  2.4   1.8 2.8 (12) 
 microg m

-3
 0.02    0.01 0.02 calculated from (12) 

Feb-Mar-94 W. Pacific lats >25N         ppt  21  134 16 370 (10) 
 microg m

-3
 0.16    0.12 2.74 calculated from (10) 

 W. Pacific lats >25N         ppt  7.5  178 1.9 24 (10) 
 microg m

-3
 0.06    0.01 0.18 calculated from (10) 

Sep 1994 W. Pacific lats 4N-43N     ppt  7 17.4    (13) 
 microg m

-3
 0.05  0.13    calculated from (13) 

Nov 1995 Southern Ocean off Hobart Tas.   ppt  1.47 0.03    (14) 
 microg m

-3
 0.01  0.0002    calculated from (14) 

 Southern Ocean off Hobart Tas.   ppt  1.09 0.02    (14) 
 microg m

-3
 0.01  0.0002    calculated from (14) 

Mar 1996* Bilbao, Spain                     ppt  400 800   10900 (15) 
 microg m

-3
 3  6    calculated from (15) 

Oct 1996 Southern Pacific                ppt  1.8 0.8    (16) 
 mcirog m

-3
 0.01  0.006    calculated from (16) 

Oct 1996 Remote Atlantic NH          ppt  1.0 0.2 11 locations  (17) 
 microg m

-3
 0.01  0.002    calculated from (17) 

Oct-Nov 1996 Remote Atlantic SH          ppt  0.3 0.06 11 locations  (17) 
 microg m

-3
 0.002  0.0005    calculated from (17) 

July-Aug 1997 Ny-Ålesund , Spitzbergen ppt  2.72 0.17 303 2.39 3.52 (18) 
 microg m

-3
 0.021  0.001    calculated from (18) 

1997 Global - 8 Sites in CMDL network  ppt     1 8 (19) 
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Figure B-1. Atmospheric concentration of perchloroethylene above the remote 

ocean. 
Filled diamonds: measured northern hemispherical concentrations from Table B-1 and 

Fischer et al. [2000], together with the trend line. 

Open diamonds: calculated northern hemispherical concentrations and trend from Dimmer 

et al. [2001]. 

Crosses: measured southern hemispherical concentrations from Table B-1 and Fischer et al. 

[2000], together with the trend line. 

Open squares: calculated southern hemispherical concentrations and trend from Dimmer et 

al. [2001]. 

 

 

 

 

Notes to Table B-1: * these results seem wholly at odds with the rest and may not be reliable. 

"B.F." signifies Black Forest. 

Sources: (1) Frank & Frank [1988a]; (2) Neumayr [1981]; (3) Frank & Frank [1988b]; (4) Frank 

et al. [1989]; (5) Frank & Frank [1990]; (6) Frank [1991]; (7) Frank et al. [1991]; (8) Koppmann 

et al. [1993]; (9) Quack [1994]; (10) Blake et al [1997]; (11) Blake et al. [1996b]; (12) Blake et al. 

[1996c]; (13) Quack & Suess [1999]; (14) Blake et al. [1999]; (15) Alonso et al. [1999]; (16) 

Wingenter et al. [1999]; (17) Fischer et al. [2000]; (18) Dimmer et al. [2001]; (19) CMDL [1998]. 
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Table B.2. Methyl chloroform in the atmosphere      

         

Date Location 
microg 

m
-3 

ppt      

  mean mean SD n min max Source 

Aug-Sep 86 Mauzenberg, B.F.(D) 740m asl 1.4  0.48 13   (1) 

Aug-Sep 86 Bernstein, B.F.(D) 600m asl 1.25  0.56 13   (1) 

Aug-Sep 86 Sulzbach, B.F.(D) 320m asl  1.18  0.43 13   (1) 

Aug-Sep 86 Schönbuch, B.F.(D) 460m asl 1.29  0.46 13   (1) 

 Cities (unspecified) 2.2      (2) reported in (3) 

1986-87 Northern Black Forest (D) 1.2 median   0.6 5.7 (3) 

Sep-87 Mauzenberg, B.F.(D) 740m asl 1.3 air 0.3 6 1 1.9 (4) 

  2.3 soil 0.4 6 1.7 2.7 (4) 

 Bernstein, B.F.(D) 600m asl 1.4 air 0.3 4 0.9 1.6 (4) 

  2.1 soil 0.3 4 1.7 2.3 (4) 

 Schönbuch, B.F.(D) 460m asl 1.2 air 0.3 6 0.8 1.5 (4) 

  2.6 soil 0.8 6 1.9 2.8 (4) 

1986-1988 SW Germany (B.F., 4 sites) 1.25    0.5 5 (5) repeated in (8) 

1986 Mace Hd. IRL (background air) 0.74 125     (6), (7) 

Nov-88 - Mar-89 Centre of Tübingen (D) 2    1 20 (8) 

 Rastatt Northern B.F. (D) 1.5    0.4 4 (8) 

 S of Lisbon (P) 0.6    0.4 1.5 (8) 

 Madeira 0.6    0.4 1 (8) 

1989 Mace Hd. IRL (background air) 0.83 140     (6), (7) 

Sep-Oct-91 W. Pacific lats >25N         ppt  137  149 114 695 (9) 

 Microg m
-3

 0.82    0.68 4.14 calculated from (9) 

 W. Pacific lats <25N         ppt  124  172 102 194 (9) 

 Microg m
-3

 0.74    0.61 1.16 calculated from (9) 

Jun-92 Madeira/Azores                ppt  156 12  139 194 (9) 

 Microg m
-3

 0.93  0.07  0.83 1.16 calculated from (9) 

1992 Mace Hd. IRL (background air) 0.89 150     (6), (7) 

Feb-Mar-94 W. Pacific lats >25N         ppt  133  134 128 550 (9) 

 Microg m
-3

 0.79    0.76 3.28 calculated from (9) 

 W. Pacific lats <25N         ppt  127  178 117 189 (9) 

 Microg m
-3

 0.76    0.70 1.13 calculated from (9) 

1995 Mace Hd. IRL (background air) 0.69 115     (6), (7) 

1997 Global - 8 sites in CMDL network  77     (10) 

1998 Mace Hd. IRL (background air) 0.42 70     (6), (7) 

 
Note: "B.F." signifies Black Forest. 

Sources: (1) Frank & Frank [1988a]; (2) Neumayr [1981]; (3) Frank & Frank [1988b]; (4) Frank 

et al. [1989]; (5) Frank & Frank [1990]; (6) Prinn et al. [1995]; (7) Prinn et al. [1998]; (8) Frank 

et al. [1991]; (9) Blake et al [1997]; CMDL [1998]. 
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 Figure B-2. Time history of globally averaged methyl chloroform 

concentration. 
(x): globally averaged concentrations calculated from measurements [Prinn et al., 

2000]. 

(-): concentrations calculated from emissions using an atmospheric lifetime of 4.8 

years and, dotted lines (…), their two uncertainties [McCulloch and Midgley, 

2001].  

 

 

Table B.3. Perchloroethylene and methyl chloroform in industrial plumes 

over 

  the Western Pacific Ocean in 1992 
 

Source Methyl chloroform Perchloroethylene 

 Measured Representative Measured Representative 

  background  background 

 ppt ppt ppt ppt 

     

Source fingerprints (measured = urban)   

Tokyo 524 158 84 8 

Hong Kong 195 137 35 5 

San Jose 305 162 84 13 

     

Plume fingerprints (measured = average in plume)  

S. Taiwan 121 121 3 3 

S. Korea 159 117 16 5 

E. China 139 123 11 3 

S. Japan 146 122 11 4 

     

Source: Blake et al. [1996a]   

 

The relative urban enhancement of the concentration of perchloroethylene is 

markedly greater than the similar enhancement of methyl chloroform 
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concentrations. It appears that this reflects the shorter lifetime of 

perchloroethylene and the smaller influence of the background concentration in an 

urban atmosphere near emission sources. This is also illustrated in the plume 

results of Blake et al. [1996a] shown in Table A3 above. 

Both perchloroethylene and methyl chloroform concentrations are enhanced in 

soil pores compared to the prevailing atmosphere. No significance has been 

attached to this. 
 

Within the limits of the uncertainty of atmospheric lifetime, Figure B-2 shows that the methyl 

chloroform measured in the atmosphere can be ascribed to anthropogenic emissions. The case is 

not nearly as clear for perchloroethylene, shown in Figure B-1. While there has been a marked 

downward trend in the concentrations measured in remote marine locations, the rate of decline is 

significantly greater, in both northern and southern hemispheres, than the decline in concentration 

calculated from emissions. These differences argue for release to the atmosphere of 

perchloroethylene from sources additional to its manufacture and use as a solvent. The sources 

may well be man-made. 

 

Perchloroethylene and methyl chloroform in sea water 
 

During several cruises in the North Sea in the years 1988-1991, perchloroethylene 

was found in 781 surface water samples at an arithmetic mean concentration of 

1.34 ng l
-1

 and a range of 0.09 to 21.4 ng l
-1

 [Nightingale, 1991]. The lower 

measurements agree with those of Singh et al. [1983] ( 0.1 to 2.8 ng l
-1

) in the 

Eastern Pacific Ocean. The spatial distribution of the North Sea measurements 

was consistent with riverborne anthropogenic input and solubility controlled by 

water temperature. The values reported in de Rooij et al. [1998] of up to 470 ng l
-1

 

for the Rhine estuary and 820, 870 and 590 for the Elbe, Scheldt and Tees, 

respectively, support this. 

Although there were fewer determinations, methyl chloroform presented a similar 

spatial distribution controlled by riverborne input and loss to the atmosphere by 

volatilisation. The mean concentration in the North Sea was 4.73 ng l
-1

 

[Nightingale, 1991] and estuaries of the major feed rivers carried up to 90 ng l
-1

 

[Euro Chlor , 1999]. 

 

Table B.4. Perchloroethylene in conifer needles       

         

Date Location microg kg
-1

  microg kg
-1

   

  mean SD  min max Comments Source 

1993-94 Crathes Forest Grampian Sc. 26 3.5 dry wt.   Pinus sylvestris (1) 

 Devilla Forest, Fife, Sc. 11.3 3.5 dry wt.   Pinus sylvestris (1) 

 Ponsonby Tarn, Cumbria UK. 12 3.9 dry wt.   Pinus sylvestris (1) 

 same results - Crathes 11  fresh wt.   Pinus sylvestris (1) 

 same results - Devilla 4.9  fresh wt.   Pinus sylvestris (1) 

 same results – Ponsonby 4.6  fresh wt.   Pinus sylvestris (1) 

unspecified Berlin (D) 0.5 - 6  fresh wt. 0.06 35 Pinus sylvestris (2) reported in (1) 

 Unspecified industrial 5.5  fresh wt.   Norway spruce (3) reported in (1) 

 Tübingen (D) 2.2 - 4  ng cm
-3
   Norway spruce (4) reported in (1) 

 S. Finland 130-350 dry wt. 0 490 Pinus sylvestris (5) reported in (1) 

 Ghent city centre 222  dry wt.   Douglas fir reported in (1) 

 Ghent city centre 107  dry wt.   Lawson cypress reported in (1) 
 Ghent city centre 28  dry wt.   Noble fir reported in (1) 
 Achenkirch (Austria) 970-1420m asl  fresh wt. 0.8 2.3 Norway spruce (6) reported in (1) 

 Black Forest (D) 0.2 - 2  ng cm
-3
   Norway spruce (4) reported in (1) 



Trichloroacetic acid in the environment 

 

 45 

 Hohe Mark (D) <3.0  fresh wt.   Norway spruce (3) reported in (1) 

 
Sources: (1) Brown et al. [1999]; (2) Plümacher & Renner [1993]; (3) Diezel et al. [1988]; (4) 

Frank & Frank [1989]; (5) Dewulf et al. [1996]; (6) Plümacher & Schröder [1994]. 

 

 

Table B.5. Methyl chloroform in conifer needles  
 
     

         

Date Location Microg kg
-1 

 microg kg
-1 

  

  Mean SD  min max Comments Source 

1993-94 Crathes Forest, Grampian Sc. 15 3.2 dry wt.   Pinus sylvestris (1) 

 Devilla Forest, Fife, Sc. 7.2 6.6 dry wt.   Pinus sylvestris (1) 

 Ponsonby Tarn, Cumbria, UK 12 4.7 dry wt.   Pinus sylvestris (1) 

unspecified Berlin (D) 0.1 - 0.6 fresh wt. 0.03 1 Pinus sylvestris (2) reported in (1) 

 Unspecified industrial 3.5 - 5.5 fresh wt.   Norway spruce (3) reported in (1) 

 Achenkirch (Austria) 970-1420m asl  fresh wt. 0.1 0.05 Norway spruce (2) reported in (1) 

 Hohe Mark (D) <3.0  fresh wt.   Norway spruce (3) reported in (1) 

 
Sources: (1) Brown et al. [1999]; (2) Plümacher & Renner [1993]; (3) Diezel et al. [1988]. 

 

Both perchloroethylene and methyl chloroform appear to be widespread in 

conifer needles at concentrations that are highly variable both between sites 

and within the same site. There are not enough data to establish 

geographical trends or differences between species. It is not even clear that 

trees in urban environments accumulate a different loading from those in 

remote rural environments. 
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