Electrolysis makes use of electricity to split molecules

Hydrogen is considered as green when climate neutral electricity is used during electrolysis. When using climate neutral electricity within chlor-alkali production, green hydrogen is produced as a by-product. The climate neutrality of the electricity used determines the carbon footprint of the hydrogen.

Water electrolyser

\[2 \text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2 \]

water \rightarrow hydrogen gas + oxygen gas

Chlor-alkali electrolyser

\[2 \text{NaCl} + 2 \text{H}_2\text{O} \rightarrow 2 \text{NaOH} + \text{H}_2 + \text{Cl}_2 \]

kitchen salt + water \rightarrow caustic soda + chlorine gas + hydrogen gas

How much electricity is needed to produce 1kg of hydrogen?

- 1kg of hydrogen required 60kWh of electricity
- 9kg water \rightarrow 1kg hydrogen + 8kg oxygen

Process needs 60kWh/all products or 60kWh/kg H₂

(Oxygen is not used)

How does hydrogen score in terms of carbon neutrality?

- **Electricity based on 50% renewable energy (0g CO₂/kWh) + 50% average EU-27 electricity mix (in 2019, 275g CO₂/kWh)**
 - 60kWh/kg H₂
 - 8.8kg CO₂ emission/kg hydrogen
 - 1.3kWh/kg H₂
 - 0.2kg CO₂ emission/kg hydrogen

- **Electricity based on 100% renewable energy (0g CO₂/kWh)**
 - 60kWh/kg H₂
 - 0kg CO₂ emission/kg hydrogen
 - 1.3kWh/kg H₂
 - 0kg CO₂ emission/kg hydrogen

- **Electricity based on 98% renewable energy + 2% average EU electricity mix**
 - 60kWh/kg H₂
 - 0.35kg CO₂ emission/kg hydrogen
 - 1.3kWh/kg H₂
 - 0.35kg CO₂ emission/kg hydrogen

Hydrogen is obtained as a by-product in chlor-alkali production, the starting point of many value chains (in health protection, construction, green energy devices, digital devices, etc.)

Hydrogen from chlor-alkali electrolysis scores even better in being carbon neutral than water electrolysis, so certainly deserves to be classified as green.

www.eurochlor.org/mcs #eurochlorMCS